論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
高消光比極化分歧器實現於絕緣層覆矽平台 High extinction ratio polarization beam splitter on SOI platform. |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
170 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2019-10-14 |
繳交日期 Date of Submission |
2019-10-29 |
關鍵字 Keywords |
矽光子、定向耦合器、矽光子陀螺儀、極化分歧器 silicon photonics, polarization beam splitter, directional coupler, fiber optics gyroscope |
||
統計 Statistics |
本論文已被瀏覽 5686 次,被下載 0 次 The thesis/dissertation has been browsed 5686 times, has been downloaded 0 times. |
中文摘要 |
本論文主要是探討利用標準互補式金屬氧化物半導體製程(CMOS)實現矽光子極化分歧器,我們提出了定向耦合器(Directional coupler)形式的極化分歧器(Polarizatio beam splitter),分別為正弦極化分歧器、三波導正弦極化分歧器,並利用串接正弦極化分歧器做成應用於矽光子陀螺一晶片的高極化消光比的極化濾波器,矽光子晶片極化控制對於許多光通訊元件來說非常的重要,因此在寬頻寬內開發具有低插入損耗(Insertion loss)和極化高消光比(Polarization extinction ratio)緊湊型高性能的極化分歧器非常的關鍵。 在波長範圍1500 nm到1600 nm,我們通過實驗證明正弦極化分歧器TE極化與TM極化的極化消光比大於15 dB的操作波長分別為30 nm 與 52 nm,最佳極化消光比分別為15 dB與26 dB,在波長1550 nm時的插入損耗分別為分別為0.122 dB與0.08 dB。三波導正弦極化分歧TE極化與TM極化極化消光比大於15 dB極化消光比操作波長就可達到100 nm,最佳的極化消光比分別為35 dB與40 dB,在波長1550 nm時的插入損耗分別為分別為0.33 dB與0.32 dB。 另外我們也透過實驗證明了利用串接正弦極化分歧器製作而成應用於矽光子陀螺儀晶片的高極化消光比極化濾波器,其元件在1550 nm到 1600 nm波長範圍內可提供大於50 dB的極化消光比,和小於1 dB的插入損耗,這與市售的LiNbO3多功能集成光學晶片(MIOC)相當。 |
Abstract |
This thesis mainly discusses the use of standard complementary metal oxide semiconductor process (CMOS) to realize the silicon photonics polarization beam splitter (PBS). We propose two directional-coupler-type polarization beam splitters (PBSs) with twin and three waveguide designs, respectively. Low insertion loss and high polarization extinction ratio (PER) are the key metrics for the proposed PBS. We further cascade the former PBS in series to enable high polarization extinction ratio for fiber optics gyroscope application. As-realized twin-waveguide PBS provides 15 and 26 dB peak PER for TE and TM polarizations with a passband bandwidth of 30 and 52 nm (PER > 15 dB), respectively. The insertion loss at 1550 nm of wavelength is around 0.122 and 0.08 dB for TE and TM polarization. Similarly, as-fabricated three-waveguide PBS provides 35 and 40 dB peak PER for TE and TM polarizations, respectively, with a passband bandwidth exceeding the detectable wavelength range (1500~1600 nm) from a grating coupler. Their insertion loss at 1550 nm of wavelength is around 0.33 and 0.32 dB for TE and TM polarization. To apply the proposed PBS for fiber-optics gyroscope applications, we further cascade five twin-waveguide PBSs in series to boost the ultimate PER to > 50 dB with an insertion loss of less than 1 dB over 1500~1600 nm wavelength range. Such a high PER value is comparable to the commercially-available LiNbO3 waveguide based multi-function integrated optical chip (MIOC). |
目次 Table of Contents |
目錄 中文審定書 i 致謝 ii 摘要 iii Abstract iv 圖目錄 vii 表目錄 xvii 第一章 緒論 1 1-1 研究背景 1 1-2矽光子技術介紹 3 1-3研究動機 4 第二章 基礎理論 7 2-1數值模擬方法 7 2-1.1有限差分特徵模態法(FDE)求解波導模態 7 2-1.2有限時域差分法(FDTD)求解頻域響應 10 2-2 SOI波導特性 13 2-2.1 SOI條形波導 13 2-2.2 SOI板形波導 14 2-3 各類型SOI極化分歧器介紹 15 2-3.1 SOI MMI極化分歧器 16 2-3.2 SOI MZI極化分歧器 18 2-3.3 SOI DC極化分歧器 21 2-3.4 SOI各類型極化分歧器比較 26 第三章 SOI極化分歧器設計與模擬 28 3-1 正弦極化分歧器設計原理 28 3-2正弦極化分歧器設計與模擬 33 3-3 串接正弦極化分歧器模擬與設計 47 3-4 應用於矽光子陀螺儀晶片極化分歧器模擬與設計 52 3-5 三波導正弦極化分歧器模擬與設計 57 3-6 極化分歧器下線光罩布局 73 第四章 極化分歧器量測結果與分析 76 4-1 量測系統架設與介紹 76 4-2 光柵耦合器與側邊耦合器 78 4-3 正弦極化分歧器量測數據 82 4-4 串接正弦極化分歧器量測數據 103 4-5 應用矽光子陀螺儀晶片極化分歧器量測 113 4-6 三波導正弦極化分歧器量測 115 4-7 串接三波導正弦極化分歧器量測 134 第五章 結論與未來工作 142 5-1 結論 142 5-2 未來工作 145 參考文獻 148 |
參考文獻 References |
[1] https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual networking-index-vni/white-paper-c11 738429.html#_Toc953325 [2] https://www.cna.com.tw/news/firstnews/201811210092.aspx [3] W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” Journal of Lightwave Technology, vol. 23, no. 1, pp. 401-412, 2005. [4] https://ic.tweakimg.net/ext/i.dsp/1109883395.png [5] L. Vivien, and L. Pavesi, Handbook of silicon photonics: Taylor & Francis, 2016. [6] R. Soref, “The past, present, and future of silicon photonics,” IEEE Journal of selected topics in quantum electronics, vol. 12, no. 6, pp. 1678-1687, 2006. [7] L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nature communications, vol. 5, pp. 3069, 2014. [8] Z. Lu, D. Celo, H. Mehrvar, E. Bernier, and L. Chrostowski, “High-performance silicon photonic tri-state switch based on balanced nested Mach-Zehnder interferometer,” Scientific reports, vol. 7, no. 1, pp. 12244, 2017. [9] http://www.eettaiwan.com/news/article/20161130NT01-silicon-photonics-become-multibillion-dollar-market [10] http://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=14294 [11] X. Wang, “Silicon photonic waveguide Bragg gratings,” University of British Columbia, 2013. [12] P. Dong, “Silicon Photonic Integrated Circuits for Wavelength-Division Multiplexing Applications”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 22, no. 6, pp. 370-378, 2016. [13] P. Dong, “Silicon photonic integrated circuits for WDM applications,” International Conference on Photonics in Switching, pp. 25-27, 2015. [14] Lawrence, Modern Inertial Technology: Navigation, Guidance, and Control, Springe, 1993. [15] M. A. Tran, T. Komljenovic, J. C. Hulme, M.J. Kennedy, D. J. Blumenthal, and J. E. Bowers, “Integrated optical driver for interferometric optical gyroscopes,” Optics Express, vol. 25, no. 4, pp. 3826-3840, 2017. [16] M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” Journal of Lightwave Technology, vol. 16, no. 8, pp. 1433-1446, 1998. [17] C. Brooks, P. Jessop, H. Deng, D. Yevick, and N. Tarr, “Passive silicon-on-insulator polarization-rotating waveguides,” Optical Engineering , vol. 45, 2006. [18] M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Optics Communications, vol. 335, pp. 48-52, 2015. [19] W. Yang, X. Yue, Y. Li, X. Wang, and Z. Wang, “A compact and wide-band polarization beam splitter based on wedge-shaped MMI coupler in silicon-on-insulator, ” Optical Fiber Communications Conference and Exhibition, pp. 1-3, 2015. [20] L. Xu et al., “Polarization Beam Splitter Based on MMI Coupler with SWG Birefringence Engineering on SOI,” IEEE Photonics Technology Letters, vol. 30, no. 4, pp. 403-406, 2018. [21] Y. Jiao, D. Dai, Y. Shi, and S. He, “Shortened Polarization Beam Splitters With Two Cascaded Multimode Interference Sections,” IEEE Photonics Technology Letters, vol. 21, no. 20, pp. 1538-1540, 2009. [22] Hosseini, S. Rahimi, X. Xu, D. Kwong, J. Covey, and R. Chen, “Ultracompact and fabrication-tolerant integrated polarization splitter,” Optics letters, vol. 36, pp. 4047-4049, 2011. [23] D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact Polarization Beam Splitter Using an Asymmetrical Mach–Zehnder Interferometer Based on Silicon-on-Insulator Waveguides,” IEEE Photonics Technology Letters, vol. 24, no. 8, pp. 673-675, 2012. [24] D. Dai, Z. Wang, and J. E. Bowers, “Considerations for the Design of Asymmetrical Mach–Zehnder Interferometers Used as Polarization Beam Splitters on a Submicrometer Silicon-On-Insulator Platform,” Journal of Lightwave Technology, vol. 29, no. 12, pp. 1808-1817, 2011. [25] X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Applied Physics Letters, vol. 89, no. 17, 2006. [26] H. Wu, Y. Tan, and D. Dai, “Ultra-broadband high-performance polarizing beam splitter on silicon,” Optics Express, vol. 25, no. 6, pp. 6069-6075, 2017. [27] F. Zhang, H. Yun, Y. Wang, Z. Lu, L. Chrostowski, and N. A. Jaeger, “Compact broadband polarization beam splitter using a symmetric directional coupler with sinusoidal bends,” Optics Letters, vol. 42, no. 2, pp. 235-238, 2017. [28] J. Feng, R. Akimoto, and H. Zeng, “Asymmetric Silicon Slot-Waveguide-Assisted Polarizing Beam Splitter,” IEEE Photonics Technology Letters, vol. 28, no. 12, pp. 1294-1297, 2016. [29] S. Guerber, Carlos Alonso-Ramos, Daniel Benedikovic, Elena Durán-Valdeiglesias, Xavier Le Roux, Nathalie Vulliet, Eric Cassan, Delphine Marris-Morini, Charles Baudot , Frédéric Boeuf , and Laurent Vivien “Broadband Polarization Beam Splitter on a Silicon Nitride Platform for O-Band Operation,” IEEE Photonics Technology Letters, vol. 30, no. 19, pp. 1679-1682, 2018. [30] J. R. Ong et al., “Broadband silicon polarization beam splitter with a high extinction ratio using a triple-bent-waveguide directional coupler,” Optics Letters, vol. 42, no. 21, pp. 4450-4453, 2017. [31] D. Chen, X. Xiao, L. Wang, G. Gao, W. Liu, and Q. Yang, “Broadband, Fabrication-Tolerant Polarization Beam Splitters Based on a Tapered Directional Coupler,” IEEE Photonics Technology Letters, vol. 28, no. 19, pp. 2074-2077, 2016. [32] C. Li and D. Dai, “Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer,” Optics Letters, vol. 42, no. 21, pp. 4243-4246, 2017. [33] Y. Kim, M. H. Lee, Y. Kim, and K. H. Kim, “High-extinction-ratio directional-coupler-type polarization beam splitter with a bridged silicon wire waveguide,” Optics Letters, vol. 43, no. 14, pp. 3241-3244, 2018. [34] D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Optics Express, vol. 19, no. 19, pp. 18614-18620, 2011. [35] D. W. Kim, M. H. Lee, Y. Kim, and K. H. Kim, “Planar-type polarization beam splitter based on a bridged silicon waveguide coupler,” Optics Express, vol. 23, no. 2, pp. 998-1004, 2015. [36] H. Qiu, L. Chen, Y. Wang, and P. Yu, “Polarization beam splitter based on strong anti-symmetric multimode Bragg gratings,” Asia Communications and Photonics Conference,” p. S3D.7, 2015. [37] J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Optics Letters, vol. 38, no. 1, pp. 4-6, 2013. [38] S. Lin, J. Hu, and K. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Applied Physics Letters, vol. 98, pp. 151101-151101, 2011. [39] D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Optics Letters, vol. 36, no. 13, pp. 2590-2592, 2011. [40] J. Qin, Qin J, Lu GW, Sakamoto T, Akahane K, Yamamoto N, Wang D, Wang C, Wang H, Zhang M, Kawanishi T, Ji Y, “Simultaneous multichannel wavelength multicasting and XOR logic gate multicasting for three DPSK signals based on four-wave mixing in quantum-dot semiconductor optical amplifier,” Optics Express, vol. 22, no. 24, pp. 29413-23, 2014. [41] N. Grossard, J. Hauden, and H. Porte, “Periodic Anticoupling Structures for Parallel Optical Waveguides on LiNbO3,” Journal of Lightwave Technology, vol. 29, no. 16, pp. 2489-2495, 2011. [42] F. Zhang, Han Yun, Valentina Donzella, Zeqin Lu, Yun Wang, Zhitian Chen, Lukas Chrostowski, and Nicolas A. F. Jaeger, “Sinusoidal anti-coupling SOI strip waveguides,” Conference on Lasers and Electro-Optics, pp. 1-2, 2016. [43] Lukas Chrostowski, and Michael Hochberg, Silicon photonics design from device systems, Cambridge University Press, 2015. [44] A. Lawrence, Modern Inertial Technology: Navigation, Guidance, and Control, Springer, 1993. [45] H. C. Lefevre, The Fiber-optic Gyroscope, Artech house, 2014. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |