Responsive image
博碩士論文 etd-0929120-154019 詳細資訊
Title page for etd-0929120-154019
論文名稱
Title
先進高強度鋼中應變誘發變韌鐵相變化初期之組織研究
A microstructural study of the early stage of deformation-induced bainitic transformation in an advanced high strength steel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
191
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-10-15
繳交日期
Date of Submission
2020-10-29
關鍵字
Keywords
TEM、晶向關係、先進高強度鋼、次微米晶粒、應變誘發變韌鐵相變化、麻田散鐵、EBSD
martensite, strain induced bainitic transformation,, sub micron grains, EBSD, TEM, orientation relationship, AHSS
統計
Statistics
本論文已被瀏覽 293 次,被下載 2
The thesis/dissertation has been browsed 293 times, has been downloaded 2 times.
中文摘要
本研究在175℃,以 10^-5/s的應變速率對先進高強度鋼 (Advanced High Strength Steel, AHSS)進行低應變量的拉伸試驗,並藉由背向散射電子繞射 (Electron Backscattered Diffraction, EBSD)及穿透式電子顯微鏡 (Transmission Electron Microscope, TEM)分析鋼材變形初期所生成之應變誘發變韌鐵組織及其與母相沃斯田鐵之晶向關係。在次微米沃斯田鐵晶粒生成之 應變誘發變韌鐵一共有四種可能的成核點,分別為沃斯田鐵晶界、已生成之變韌鐵子單元尖端附近、沃斯田鐵/麻田散鐵之相界及雙晶界,且其與母相沃斯田鐵之晶向關係會隨著兩相的介面位置不同而有所差異。應變誘發變韌鐵的形貌應屬於片狀 (plate),而變韌鐵的sheaf結構與其傾向採用的晶向關係有著密切的關聯。長/寬比較大的變韌鐵傾向採用最密堆積面平行的晶向關係;而長/寬比較小的變韌鐵有較大的機會符合最密堆積方向平行的晶向關係。
Abstract
In this study, a tensile test was performed on advanced high strength steel (AHSS) at 175 under a strain rate of 10 5/s. The microstructural and crystallographic characterization of strain induced bainitic transformation (SIBT) at the early stage of deformation were carried out by using electron backscattered diffraction (EBSD) and transmission electron microscope (TEM). In submicron grained austenite, there are four possible nucleation sites for SIBT, namely, austenite grain boundaries, near the tip of existing bainite sub units, athermal martensite/austenite phase boundaries and twin boundaries. It was found that the orientation relationship between strain induced bainite and parent austenite often deviated from the well known orientation relationship between FCC and BCC, and this deviation varied with the position of the phase boundaries. The morphology of the strain induced bainite is most likely to be plate like. The orientation relationship between deformation induced bainite and its parent austenite has great influence on its sheaf structure. Deformation induced bainite with a larger aspect ratio tends to adopt the orientation relationship having the close packed plane parallel to the close packed plane of its parent austenite, and bainite with a smaller aspect ratio has a higher probability of having the orientation relationship with the close packed direction parallel to the close packed direction of its parent austenite.
目次 Table of Contents
論文審定書 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 xix
一、前言 1
二、文獻回顧 2
2-1 變韌鐵 2
2-1-1 變韌鐵相變化機制 2
2-1-2 變韌鐵成核與成長 3
2-1-3 變韌鐵的形貌 4
2-2 變形誘發變韌鐵 5
2-2-1 應力對變韌鐵相變化之影響 6
2-2-2 預變形之沃斯田鐵對變韌鐵相變化的影響 7
2-2-3 應變誘發變韌鐵 10
2-3 BCC結構與FCC結構之晶向關係 19
三、研究目的 22
四、實驗方法 23
4-1 實驗材料 23
4-2 拉伸試驗 23
4-2-1 拉伸前表面處理 23
4-2-2 恆溫拉伸 23
4-3 顯微組織分析 24
4-3-1 掃描式電子顯微鏡(SEM) 24
4-3-2 穿透式電子顯微鏡(TEM) 24
4-4 X光能量散佈光譜儀(Energy Dispersive Spectrometers, EDS)分析 25
4-5 背向散射電子繞射(EBSD) 25
五、實驗結果 26
5-1 SEM之顯微組織分析 26
5-1-1 拉伸前之顯微組織觀察 26
5-1-2 應變誘發變韌鐵的分佈情形 26
5-1-3 EBSD分析 28
5-1-4 應變誘發麻田散鐵 30
5-2 TEM之顯微組織分析 31
5-2-1 Deformation twin 31
5-2-2 Athermal麻田散鐵 32
5-2-3 應變誘發變韌鐵的成核及其與母相沃斯田鐵的晶向關係 34
5-2-4 應變誘發麻田散鐵 39
六、討論 41
6-1 麻田散鐵 42
6-2 應變誘發變韌鐵 46
6-2-1 應變誘發變韌鐵的成核 47
6-2-2 晶向關係 49
七、結論 53
八、參考文獻 54
參考文獻 References
[1] L. Samek, B. C. De Cooman, J. Van Slycken, P. Verleysen, and J. Degrieck, "Physical Metallurgy of Multi‐Phase Steel for Improved Passenger Car Crash‐Worthiness," Steel Research International, vol. 75, pp. 716-723, 2004.
[2] I. Tamura, "Deformation-induced martensitic transformation and transformation-induced plasticity in steels," Metal Science, vol. 16, pp. 245-253, 1982.
[3] K. I. Sugimoto, M. Kobayashi, and S. I. Hashimoto, "Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel," Metallurgical Transactions A, vol. 23, pp. 3085-3091, 1992.
[4] K. I. Sugimoto, M. Tsunezawa, T. Hojo, and S. Ikeda, "Ductility of 0.1-0.6 C-1.5 Si-1.5 Mn ultra high-strength TRIP-aided sheet steels with bainitic ferrite matrix," ISIJ International, vol. 44, pp. 1608-1614, 2004.
[5] K. I. Sugimoto, S. N. Hidaka, H. Tanino, and J. Kobayashi, "Warm formability of 0.2 Pct C-1.5 Pct Si-5 Pct Mn transformation-induced plasticity-aided steel," Metallurgical and Materials Transactions A, vol. 48, pp. 2237-2246, 2017.
[6] K. I. Sugimoto, H. Tanino, and J. Kobayashi, "Warm ductility of 0.2% C–1.5% Si–5% Mn TRIP-aided steel," Materials Science and Engineering: A, vol. 688, pp. 237-243, 2017.
[7] 邱夢婷, "拉伸溫度對多相中錳鋼拉伸性質及顯微組織的影響," 國立中山大學材料與光電科學學系 碩士論文, 2017.
[8] 彭子庭, "低應變速率下拉伸溫度對中錳鋼之拉伸性質與顯微組織的影響," 國立中山大學材料與光電科學學系 碩士論文, 2017.
[9] H. K. D. H. Bhadeshia, "Bainite in steels," Leeds, United Kingdom: Maney Publishing, 1990.
[10] H. K. D. H. Bhadeshia, "Very short and very long heat treatments in the processing of steel," Materials and Manufacturing Processes, vol. 25, pp. 1-6, 2010.
[11] H. K. D. H. Bhadeshia, "Effect of stress & strain on formation of bainite in steels," Hot Workability of Steels and Light Alloys-Composites, vol. 543-556, pp. 543-556, 1996.
[12] A. H. Cottrell and B. A. Bilby, "Dislocation theory of yielding and strain ageing of iron," Proceedings of the Physical Society. Section A, vol. 49-62, pp. 49-62, 1949.
[13] H. K. D. H. Bhadeshia and A. R. Waugh, "Bainite: An atom-probe study of the incomplete reaction phenomenon," Acta Metallurgica, vol. 30, pp. 775-784, 1982.
[14] C. Garcia-Mateo, J. A. Jiménez, H. W. Yen, M. K. Miller, L. Morales-Rivas, M. Kuntz, S. P. Ringer, J. R. Yang, and F. G. Caballero, "Low temperature bainitic ferrite: Evidence of carbon super-saturation and tetragonality," Acta Materialia, vol. 91, pp. 162-173, 2015.
[15] C. N. Hulme-Smith, I. Lonardelli, A. C. Dippel, and H. K. D. H. Bhadeshia, "Experimental evidence for non-cubic bainitic ferrite," Scripta materialia, vol. 69, pp. 409-412, 2013.
[16] E. Swallow and H. K. D. H. Bhadeshia, "High resolution observations of displacements caused by bainitic transformation," Materials Science and Technology, vol. 12, pp. 121-125, 1996.
[17] Q. Furnémont, G. Lacroix, S. Godet, K. T. Conlon, and P. J. Jacques, "Critical assessment of the micromechanical behaviour of dual phase and trip-assisted multiphase steels," Canadian Metallurgical Quarterly, vol. 43, pp. 35-42, 2004.
[18] P. H. Shipway and H. K. D. H. Bhadeshia, "Mechanical stabilisation of bainite," Materials Science and Technology, vol. 11, pp. 1116-1128, 1995.
[19] K. Tsuzaki, T. Ueda, K. Fujiwara, and T. Maki, "Increase in retained austenite by ausforming in an austempered silicon steel," New Materials Processes for the Future, pp. 799-804, 1989.
[20] H. I. Aaronson and C. Wells, "Sympathetic nucleation of ferrite," Journal of Metals, vol. 8, pp. 1216-1223, 1956.
[21] K. Ameyama, T. Maki, and I. Tamura, "Morphology and crystallography of the precipitation of austenite at ferrite grain boundaries in two-phase stainless steel," Journal of the Japan Institute of Metals and Materials, vol. 50, pp. 602-611, 1986.
[22] H. K. D. H. Bhadeshia, S. A. David, J. M. Vitek, and R. W. Reed, "Stress induced transformation to bainite in Fe–Cr–Mo–C pressure vessel steel," Materials Science and Technology, vol. 7, pp. 686-698, 1991.
[23] L. C. Chang and H. K. D. H. Bhadeshia, "Stress-affected transformation to lower bainite," Journal of Materials Science, vol. 31, pp. 2145-2148, 1996.
[24] A. Matsuzaki, H. K. D. H. Bhadeshia, and H. Harada, "Stress affected bainitic transformation in a Fe-C-Si -Mn alloy," Acta Metallurgica et Materialia, vol. 42, pp. 1081-1090, 1994.
[25] G. Xu, T. Xiong, Y. L. Zhang, M. X. Zhou, and Y. Zhang, "The Effects of High Temperature Deformation on Bainite Transformation," Applied Mechanics and Materials, vol. 513-517, pp. 206-209, 2014.
[26] J. R. Yang, C. Y. Huang, and W. H. Hsieh, "Mechanical stabilization of austenite against bainitic reaction in Fe–Mn–Si–C bainitic steel," Materials Transactions, JIM, vol. 37, pp. 579-585, 1996.
[27] R. H. Larn and J. R. Yang, "The effect of compressive deformation of austenite on the bainitic ferrite transformation in Fe- Mn- Si-C steels," Materials Science and Engineering: A, vol. 278, pp. 278-291, 2000.
[28] C. Y. Huang, J. R. Yang, and S. C. Wang, "Effect of compressive deformation on the transformation behavior of an ultra-low-carbon bainitic steel," Materials Transactions, JIM, vol. 34, pp. 658-668, 1993.
[29] J. Y. Min, J. P. Lin, Y. A. Min, and F. F. Li, "On the ferrite and bainite transformation in isothermally deformed 22MnB5 steels," Materials Science and Engineering: A, vol. 550, pp. 375-387, 2012.
[30] B. B. He, W. Xu, and M. X. Huang, "Effect of ausforming temperature and strain on the bainitic transformation kinetics of a low carbon boron steel," Philosophical Magazine, vol. 95, pp. 1150-1163, 2015.
[31] J. Y. Min, J. P. Lin, and Y. A. Min, "Effect of thermo-mechanical process on the microstructure and secondary-deformation behavior of 22MnB5 steels," Journal of Materials Processing Technology, vol. 213, pp. 818-825, 2013.
[32] R. Y. Zhang and J. D. Boyd, "Bainite transformation in deformed austenite," Metallurgical and Materials Transactions A, vol. 41, pp. 1448-1459, 2010.
[33] A. Eres-Castellanos, F. G. Caballero, and C. Garcia-Mateo, "Stress or Strain Induced Martensitic and Bainitic transformations during ausforming processes," Acta Materialia, vol. 189, pp. 60-72, 2020.
[34] Y. K. Lee and J. Han, "Current opinion in medium manganese steel," Materials Science and Technology, vol. 31, pp. 843-856, 2015.
[35] J. F. Wang, Q. Yang, X. D. Wang, Y. Y. Zhao, and L. Wang, "A phenomenon of strain induced bainitic transformation and its effect on strength enhancement in a lightweight transformation-induced-plasticity steel," Materials Science and Engineering: A, vol. 751, pp. 340-350, 2019.
[36] C. Cayron, "One-step model of the face-centred-cubic to body-centred-cubic martensitic transformation," Acta Crystallographica Section A: Foundations of Crystallography, vol. 69, pp. 498-509, 2013.
[37] Y. He, S. Godet, and J. Jonas, "Observations of the Gibeon meteorite and the inverse Greninger–Troiano orientation relationship," Journal of applied crystallography, vol. 39, pp. 72-81, 2006.
[38] T. J. Headley and J. A. Brooks, "A new bcc-fcc orientation relationship observed between ferrite and austenite in solidification structures of steels," Metallurgical and materials transactions A, vol. 33, pp. 5-15, 2002.
[39] G. Miyamoto, N. Takayama, and T. Furuhara, "Accurate measurement of the orientation relationship of lath martensite and bainite by electron backscatter diffraction analysis," Scripta Materialia, vol. 60, pp. 1113-1116, 2009.
[40] M. X. Zhang and P. M. Kelly, "Accurate orientation relationship between ferrite and austenite in low carbon martensite and granular bainite," Scripta materialia, vol. 47, pp. 749-755, 2002.
[41] 吳季凌, "中錳鋼變形早期變形誘發麻田散鐵之組織研究," 國立中山大學材料與光電科學學系 碩士論文, 2015.
[42] T. Tanaka, N. Maruyama, N. Nakamura, and A. J. Wilkinson, "Tetragonality of Fe-C martensite–a pattern matching electron backscatter diffraction analysis compared to X-ray diffraction," Acta Materialia, vol. 195, pp. 728-738, 2020.
[43] S. Allain, J. P. Chateau, O. Bouaziz, S. Migot, and N. Guelton, "Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys," Materials Science and Engineering: A, vol. 387, pp. 158-162, 2004.
[44] T. H. Lee, E. Shin, C. S. Oh, H. Y. Ha, and S. J. Kim, "Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels," Acta Materialia, vol. 58, pp. 3173-3186, 2010.
[45] H. Sato and S. Zaefferer, "A study on the formation mechanisms of butterfly-type martensite in Fe–30% Ni alloy using EBSD-based orientation microscopy," Acta materialia, vol. 57, pp. 1931-1937, 2009.
[46] N. Takayama, G. Miyamoto, and T. Furuhara, "Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel," Acta Materialia, vol. 60, pp. 2387-2396, 2012.
[47] S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and Maki, "The morphology and crystallography of lath martensite in Fe-C alloys," Acta materialia, vol. 51, pp. 1789-1799, 2003.
[48] A. Shibata, S. Morito, T. Furuhara, and T. Maki, "Substructures of lenticular martensites with different martensite start temperatures in ferrous alloys," Acta Materialia, vol. 57, pp. 483-492, 2009.
[49] A. Shibata, T. Murakami, S. Morito, T. Furuhara, and T. Maki, "The origin of midrib in lenticular martensite," Materials transactions, vol. 49, pp. 1242-1248, 2008.
[50] P. Zhang, Y. L. Chen, W. L. Xiao, D. H. Ping, and X. Q. Zhao, "Twin structure of the lath martensite in low carbon steel," Progress in Natural Science: Materials International, vol. 26, pp. 169-172, 2016.
[51] D. H. Ping, S. Q. Guo, M. Imura, X. Liu, T. Ohmura, M. Ohnuma, X. Lu, T. Abe, and H. Onodera, "Lath formation mechanisms and twinning as lath martensite substructures in an ultra low-carbon iron alloy," Scientific reports, vol. 8, pp. 1-11, 2018.
[52] D. H. Ping and M. Ohnuma, "ω-Fe particle size and distribution in high-nitrogen martensitic steels," Journal of materials science, vol. 53, pp. 5339-5355, 2018.
[53] D. H. Ping, A. Singh, S. Q. Guo, T. Ohmura, M. Ohnuma, T. Abe, and H. Onodera, "A simple method for observing ω-Fe electron diffraction spots from< 112> α-Fe directions of quenched Fe–C twinned martensite," ISIJ International, vol. 58, pp. 159-164, 2017.
[54] D. H. Ping, "Review on ω phase in body-centered cubic metals and alloys," Acta Metallurgica Sinica (English Letters), vol. 27, pp. 1-11, 2014.
[55] S. Q. Wu, D. H. Ping, Y. Yamabe-Mitarai, W. L. Xiao, Y. Yang, Q. M. Hu, G. P. Li, and R. Yang, "{1 1 2}< 1 1 1> Twinning during ω to body-centered cubic transition," Acta materialia, vol. 62, pp. 122-128, 2014.
[56] A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedström, and A. Borgenstam, "Effect of carbon content on variant pairing of martensite in Fe–C alloys," Acta materialia, vol. 60, pp. 7265-7274, 2012.
[57] 詹侑誠, "先進高強度鋼中應變誘發變韌鐵相變化組織演化之研究," 國立中山大學材料與光電科學學系 碩士論文, 2020.
[58] S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen, "The morphology and crystallography of lath martensite in alloy steels," Acta Materialia, vol. 54, pp. 5323-5331, 2006.
[59] X. M. Zhang, E. Gautier, and A. Simon, "Orientation relationships of deformation-induced martensite in Fe-Ni-C alloys," Acta Metallurgica, vol. 37, pp. 487-497, 1989.
[60] T. Maki, "Microstructure and Mechanical Behaviour of Ferrous Martensite," Materials Science Forum, vol. 56-58, pp. 157-168, 1991.
[61] A. Shibata, S. Morito, T. Furuhara, and T. Maki, "Local orientation change inside lenticular martensite plate in Fe–33Ni alloy," Scripta materialia, vol. 53, pp. 597-602, 2005.
[62] H. Kitahara, R. Ueji, M. Ueda, N. Tsuji, and Y. Minamino, "Crystallographic analysis of plate martensite in Fe–28.5 at.% Ni by FE-SEM/EBSD," Materials Characterization, vol. 54, pp. 378-386, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code