Responsive image
博碩士論文 etd-1017123-131256 詳細資訊
Title page for etd-1017123-131256
論文名稱
Title
P型鰭式場效電晶體可靠度分析及物理機制
Analysis of Reliability and Physic Mechanism in p-FinFET
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2023-11-15
繳交日期
Date of Submission
2023-11-17
關鍵字
Keywords
鰭式場效電晶體、臨界電壓(Vt)、負偏壓應力劣化(NBS)、邊緣效應、熱載子劣化機制(HCS)
FinFET, Threshold Voltage (Vt), Negative Bias Stress (NBS), Edge Effect, Hot Carrier Stress(HCS)
統計
Statistics
本論文已被瀏覽 163 次,被下載 0
The thesis/dissertation has been browsed 163 times, has been downloaded 0 times.
中文摘要
隨著現代的科技日新月異,今日世界中晶片的需求日漸增加,1960年代,第一顆電晶體在貝爾實驗室問世。幾年之後,英特爾的共同創辦人 Gorden Moore 提出了摩爾定律,意為:在IC上一樣大的面積,電晶體的數量會每過兩年就成長一倍。隨著製程節點微縮,雖然性能上會有所提升,例如:開態電流變大、元件封裝密度提高。但也會伴隨一些問題產生,最主要一項即為閘極漏電。傳統的金氧半場效電晶體(MOSFET)微縮到極小尺寸時會遇到物理厚度限制及閘極(Gate)漏電過大的問題。因此,在1999年胡正明博士發明了鰭式場效電晶體(FinFET)。不僅解決了漏電問題,更延續摩爾定律的生命。本研究主要探討FinFET在不同製程變因下的電性和可靠度分析,進而提出物理機制。
在本文中的第四章中,會探討兩種不同氣體含氮量退火製程的元件在電性上的差異,發現含氮量較多的元件相對於較少的會有較大臨界電壓(Vt)、較差的次臨界擺幅(S.S.)、較小的轉導(gm),以及較低的開態驅動電流(Ion),從而得知製程的氣體含氮量會影響元件氧化層和通道介面的品質,進而比較通道介面之缺陷數,使用Charge Pumping(ICP)量測手法做驗證,結果得知氮對介面確實造成影響產生更多之缺陷。
本文第五章中,主要探討對兩種不同製程條件樣本進行負偏壓應力劣化(Negative Bias Stress,NBS)分析,經過此一系列的劣化實驗,比較兩者之間劣化量的差異,且使用不同通道長度的元件去做電性劣化比較,發現此元件存在氧化層邊緣效應(Oxide Edge Effect),針對因此原因而產生的電性異常現象提出物理模型解釋。
於本文第六章中,使用與前章節一樣的兩樣本進行熱載子應力劣化(Hot Carrier Stress,HCS)與負偏壓溫度不穩定性(Negative Bias Temperature Instability,NBTI)之分析,且分別對短、中、長通道長度元件進行劣化分析,於實驗結果中驗證不同製程變因下電晶體通道也會產生邊緣效應。由此章之結論整合前章之討論,提出經過氮退火製程的FinFET元件在經過應力劣化後之完整物理模型機制。
Abstract
In today's rapidly advancing world of technology, the demand for microchips is constantly increasing. In the 1960s, the first transistor was born at Bell Labs. A few years later, Intel co-founder Gordon Moore proposed Moore's Law, which states that the number of transistors on an integrated circuit (IC) of the same size would double every two years. As process nodes shrink, there are performance improvements such as increased drain current and higher component packaging density. However, this progress also gives rise to certain challenges, with one of the most significant being gate leakage. When traditional Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) are scaled down to very small sizes, issues like physical thickness limitations and excessive gate leakage become prominent.
Therefore, in 1999, Dr. Hu Chen-Ming invented the FinFET (Fin Field-Effect Transistor), which not only resolved the leakage problem but also extended the life of Moore's Law. This study primarily explores the electrical characteristics and reliability of FinFETs under different process variations, and subsequently proposes the underlying physical mechanisms.
In the fourth chapter of this paper, two different nitrogen-containing annealing processes are examined to understand the differences in electrical properties of the devices. It is found that devices with higher nitrogen content exhibit higher threshold voltage (Vt), lower subthreshold swing (S.S.), lower transconductance (gm), and lower on-state drive current (Ion) compared to those with less nitrogen content. This suggests that the nitrogen content in the annealing treatment affects the quality of the oxide layer and channel interface. To further analyze the defect density in the channel interface, the Charge Pumping (ICP) measurement method is used for validation, and the results confirm that nitrogen indeed has an impact and generating more defects.
In the fifth chapter of this paper, a Negative Bias Stress (NBS) analysis is conducted on samples from two different process conditions. Through a series of degradation experiments, differences in degradation between the two conditions are compared. Additionally, devices with different channel lengths are used to compare electrical degradation. It is observed that these devices exhibit an Oxide Edge Effect, leading to anomalous electrical behavior. A physical model is proposed to explain these anomalies resulting from the oxide edge effect.
In the sixth chapter, an analysis of Hot Carrier Stress (HCS) and Negative Bias Temperature Instability (NBTI) is conducted on two different samples, using short, medium, and long channel length devices. Experimental results validate that transistor channels exhibit edge effects under different process variations. The conclusions from this chapter integrate the discussions from the previous chapters, presenting a comprehensive physical model mechanism for FinFET devices subjected to stress degradation.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
致謝 iii
摘要 v
Abstract vii
目錄 x
圖目錄 xii
表目錄 xv
第 一 章 緒論 1
1.1 前言 1
第 二 章 簡介與文獻回顧 4
2.1 高介電常數(High-k)材料特性 4
2.2 元件氮化(Nitridation)之影響 8
2.3 元件結構與製程 11
2.4 鰭式場效電晶體操作原理 12
第 三 章 半導體參數之萃取與分析儀介紹 15
3.1半導體參數萃取介紹 15
3.1.1 臨界電壓(Threshold Voltage,Vt) 16
3.1.2 載子遷移率(Carrier Mobility,μ) 16
3.1.3次臨界擺幅(Subthreshold Swing,S.S.) 17
3.2 半導體參數分析儀介紹 18
第 四 章 鰭式場效電晶體經氮退火處理後之濃度效應分析 20
4.1 簡介 20
4.2 實驗架構 21
4.3 實驗結果與討論 22
第 五 章 在氮退火處理期間產生之氧化層邊緣效應分析 29
5.1 簡介 29
5.2 實驗架構 30
5.3 實驗結果與討論 30
第 六 章 在氮退火處理期間產生之通道邊緣效應分析 40
6.1 簡介 40
6.2 實驗架構 41
6.3 實驗結果與討論 43
第 七 章 結論 54
參考文獻 55

參考文獻 References
[1] Moore, Gordon. "Progress In Digital Integrated Electronics" (PDF). Retrieved July 15,2015.
[2] https://www.tsmc.com/chinese/dedicatedFoundry/technology/logic/l_16_12nm
[3] https://www.intel.com/content/www/us/en/newsroom/opinion/moore-law-now-and-in-the-future.html#gs.69iihn
[4] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, et al., "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Transactions on Electron Devices, vol. 47, pp. 2320-2325, 2000.
[5] V. Subramanian, A. Mercha, B. Parvais, J. Loo, C. Gustin, M. Dehan, et al., "Impact of fin width on digital and analog performances of n-FinFETs," Solid-State Electronics, vol. 51, pp. 551-559, 2007.
[6] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, et al., "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Transactions on Electron Devices, vol. 47, pp. 2320-2325, 2000.
[7] T.-s. Park, S. Choi, D. Lee, J. Yoo, B. Lee, J. Kim, et al., "Fabrication of body-tied FinFETs (Omega MOSFETs) using bulk Si wafers," in VLSI Technology, 2003. Digest of Technical Papers. 2003 Symposium on, 2003, pp. 135-136.
[8] T.-S. Park, H. J. Cho, J. D. Choe, I. H. Cho, D. Park, E. Yoon, et al., "Characteristics of body-tied triple-gate pMOSFETs," IEEE electron device letters, vol. 25, pp. 798-1274-1276, 2015.
[9] J. Assenmacher, ¬“BSIM4 Modeling and Parameter Extraction,”(PDF). Retrieved January 31 2003.
[10] J. Robertson, etl. “Band structures and band offsets of high K dielectrics on Si,” Appied Surface Science, vol. 190, pp. 2-10, 2002
[11] Chau, Robert, et al. "High-/spl kappa//metal-gate stack and its MOSFET characteristics." IEEE Electron Device Letters 25(6), 2004, pp. 408-410.
[12] M. Saitoh, M. Terai, N. Ikarashi, H. Watanabe, S. Fujieda, T. Iwamoto, T. Ogura, A. Morioka, K. Watanabe, T. Tatsumi, and H. Watanabe, “1.2 nm HfSiON/SiON stacked gate insulators for 65-nm-node MISFETs,” Jpn. J. Appl. Phys., vol. 44, pp. 2330–2335, 2005.
[13] K.Xiong, J.Robertson, andS. J.Clark, “Passivation of oxygen vacancy states in HfO2 by nitrogen,” Journal of Applied Physics, vol. 99, no. 4, 2006.
[14] C. H. Choi, Student Member, IEEE, T. S. Jeon, R. Clark, and D. L. Kwong, “Electrical Properties and Thermal Stability of CVD HfOxNy Gate Dielectric With Poly-Si Gate Electrode”, IEEE Electron Device Letters, vol. 24, no. 4, april 2003.
[15] H. Watanabe, S. Kamiyama, N. Umezawa, K. Shiraishi, S. Yoshida, Y. Watanabe, T. Arikado, T. Chikyow, K. Yamada, and K. Yasutake, “Role of nitrogen incorporation into Hf-based high-k gate dielectrics for termination of local current leakage paths,” Jpn. J. Appl. Phys., vol. 44, no. 43, p. L1333, 2005.
[16] F.-M. Ciou, J.-H. Lin, P.-H. Chen, T.-C. Chang, K.-C. Chang, J.-T. Hsu, Y.-S. Lin, F.-Y. Jin, W.-C. Hung, C.-H. Yeh, T.-T. Kuo, O. Cheng, C.-T. Huang, and Y.-H. Ye, “Comparison of the hot carrier degradation of N- and P-type fin field-effect transistors in 14-nm technology nodes,” IEEE Electron Device Lett., vol. 42, no. 10, pp. 1420–1423, Oct. 2021.
[17] R. E. Paulsen, R. R. Siergiej, M. L. French, and M. H. White, “Observation of Near-Interface Oxide Traps with the Charge-Pumping Technique,” IEEE Electron Device Letter, vol. 13, pp. 627-629, Dec. 1992.
[18] J. R. Schwank, D. M. Fleetwood, M. R. Shaneyfelt, and P. S. Winokur, “A Critical Comparison of Charge-Pumping, Dual-Transistor, and Midgap Measurement Techniques,” IEEE Trans. Nucl. Sci., vol. 40, pp. 1666-1677, Dec. 1993.
[19] J. R. Schwank, D. M. Fleetwood, M. R. Shaneyfelt, P. S. Winokur, C. L. Axness, and L. C. Riewe, “Latent Interface-Trap Buildup and its Implications for Hardness Assurance,” IEEE Trans. Nucl. Sci., vol. 39, pp. 1953-1963, Dec. 1992.
[20] P. J. McWhorter and P. S. Winokur, “Simple Technique for Separating the Effects of Interface Traps and Trapped-Oxide Charge in MetalOxide Semiconductor Transistors,” Appl. Phys. Lett., vol. 48, pp. 133-135, Jun. 1986.
[21] C. Guerin et al., "Combined effect of NBTI and channel hot carrier effects in pMOSFETs," in 2005 IEEE International Integrated Reliability Workshop, 2005: IEEE, p. 7 pp.
[22] K. A. Jenkins and B. P. Linder, "Reduction of Hot Carrier Degradation of FinFETs Due to Short-Pulse Stress," IEEE Electron Device Letters, vol. 36, pp. 1274-1276, 2015.
[23] S.-H. Renn, J. L. Pelloie and F. Balestra, “Hot-carrier effects and reliable lifetime prediction in deep submicron N- and P-channel SOI MOSFETs,” in IEEE Transactions on Electron Devices, vol. 45, no. 11, pp. 2335-2342, Nov 1998.
[24] Z. Yu, Z. Zhang, Z. Sun, R. Wang, and R. Huang, “On the trap locations in bulk finFETs after hot carrier degradation (HCD),” IEEE Transactions on Electron Devices, vol. 67, no. 7, pp. 3005–3009, 2020.
[25] Y. Lin et al., "Abnormal Increment Substrate Current After Hot Carrier Stress in n-FinFET," in IEEE Electron Device Letters, vol. 41, no. 1, pp. 15-18, Jan. 2020.
[26] H. Chang et al., "Degradation Mechanism of Short Channel p- FinFETs under Hot Carrier Stress and Constant Voltage Stress," 2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), 2020, pp. 1-4
[27] C.-Y. Chen, J.-W. Lee, S.-D. Wang, M.-S. Shieh, P.-H. Lee, W.-C. Chen, H.-Y. Lin, K.-L. Yeh, and T.-F. Lei, “Negative bias temperature instability in low-temperature polycrystalline silicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 53, no. 12, pp. 2993–3000, Dec. 2006.
[28] D. K. Schroder and J. A. Babcock, “Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing,” J. Appl. Phys., vol. 94, no. 1, pp. 1–18, Jul. 2003.
[29] K. O. Jeppson and C. M. Svensson, “Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices,” J. Appl. Phys., vol. 48, no. 5, pp. 2004–2014, 1977.
[30] P. T. Lai, J. P. Xu, H. B. Lo, and Y. C. Cheng, “Correlation between hot- carrier-induced interface states and GIDL current increase in n-MOSFET’s,” IEEE Trans. Electron Devices, vol. 45, pp. 521–528, Feb. 1998.
[31] T. Hoffmann et al., "GIDL (gate-induced drain leakage) and parasitic schottky barrier leakage elimination in aggressively scaled HfO/sub 2/TiN FinFET devices," IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest, Washington, DC, 2005, pp. 725-728.
[32] Y.-K. Choi, D. Ha, T.-J. King, and J. Bokor, “Investigation of gate-induced drain leakage (GIDL) current in thin body devices: Single-gate ultra-thin body, symmetrical double-gate, and asymmetrical double-gate MOSFETs,” Jpn. J. Appl. Phys, vol. 42, no. 4B, pp. 2073–2076, 2003.
[33] M. A. Alam and S. Mahapatra, “A comprehensive model of PMOS NBTI degradation,” Microelectron. Rel., vol. 45, no. 1, pp. 71–81, 2005.
[34] H. Kufluoglu and M. A. Alam, “A generalized reaction–diffusion model with explicit H–H2 dynamics for negative-bias temperature-instability (NBTI) Degradation,” IEEE Trans. Electron Devices, vol. 54, no. 5, pp. 1101–1107, May 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-11-17
校外 Off-campus:開放下載的時間 available 2026-11-17

您的 IP(校外) 位址是 18.220.97.0
現在時間是 2025-05-15
論文校外開放下載的時間是 2026-11-17

Your IP address is 18.220.97.0
The current date is 2025-05-15
This thesis will be available to you on 2026-11-17.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2026-11-17

QR Code