Responsive image
博碩士論文 etd-1104122-133646 詳細資訊
Title page for etd-1104122-133646
論文名稱
Title
臺灣空污健康風險的跨媒體議題設定:一個對新聞媒體和社群媒體關注度的動態分析
Intermedia Agenda Setting of Health Risks Related to Air Pollution: Testing the Dynamics of Media Attention in News and Social Media
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
176
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-11-16
繳交日期
Date of Submission
2022-12-04
關鍵字
Keywords
空污、健康風險、風險特徵、跨媒體議題設定、電腦內容分析、Spearman等級相關性檢定、時間序列分析
Air Pollution, Health Risk, Risk Attributes, Intermedia Agenda Setting, Computer-assisted Content Analysis, Spearman rank correlation, Time Series Analysis
統計
Statistics
本論文已被瀏覽 157 次,被下載 5
The thesis/dissertation has been browsed 157 times, has been downloaded 5 times.
中文摘要
空氣污染嚴重威脅人類健康,導致全球每年超過700萬人提早死亡。臺灣的空氣污染相當嚴重。空污所造成的健康風險,需仰賴新聞和社群媒體傳達給一般民眾,因此,本研究旨在考察臺灣新聞媒體如何報導空污引起的健康風險、社群媒體如何討論這些風險,以及兩媒體相互影響情形。
本研究擷取2017至2021年間,針對網路新聞三大報(聯合報、自由時報、蘋果日報)和社群媒體(PTT)篩選空氣污染主題中提到健康風險的報導和討論內容,另蒐集現實空污數據作為研究樣本。以R語言作為文字探勘工具,考察兩媒體如何描述健康風險的四個特徵,包含疾病名稱、縣市地區、脆弱人群和解決方案,並分析文章中含有這些特徵時的情感屬性。以Spearman等級相關性檢定和時間序列分析探討兩媒體與現實數據的相關性、差異性和互動關係。
研究發現新聞與社群媒體探討空污相關的疾病名稱,其詞頻都反映現實這些疾病的嚴重程度;兩媒體探討縣市地區的頻率卻與現實空污的嚴重程度不符。討論空污所致疾病名稱時,新聞和PTT有各自不同的顯著性排序,兩媒體在提及縣市地區、脆弱人群、解決方案的內容,其顯著性排序相似。此外,新聞和PTT在陳述健康風險四個特徵時的情緒顯著性排序不同。時間序列分析發現跨媒體第一層議題和第二層實質性屬性議題設定的方向是單一的,均由PTT影響新聞,情感屬性則無相互影響。現實空污數據影響兩媒體的第二層議題設定,包含所有實質性屬性詞頻上,及情感性屬性情緒分數上的變化趨勢,但未觀察到對兩媒體第一層議題設定,即總報導和討論量上的影響。
Abstract
Air pollution poses an acute threat to human health, causing more than 7 million premature deaths worldwide each year. Taiwan has a very high level of air pollution. Health risks from air pollution depend on news and social media for public communication. Therefore, the purpose of this study is to examine how news in Taiwan reports on health risks related to air pollution, how social media discusses these risks, and how the two media influence each other.
As part of this study, the online content of the three major newspapers (United Daily News, Liberty Times, Apple Daily) and discussions in social media (PTT) on air pollution from 2017 to 2021 was retrieved. Actual air pollution data were collected as well. Using R as a text mining tool, this study examined how the two media describe four health risk attributes, including disease, regions, vulnerable populations, and solutions. This study also examined the affective attributes that contain these features. The correlation, difference, and interaction between the two media and real data were examined with Spearman rank correlation test and time series analysis.
The study found that the frequency of words in news and social media about diseases linked to air pollution reflected the true severity of these diseases. However, the frequency with which both media discussed regions was not consistent with the real severity of air pollution in these regions. When discussing diseases related to air pollution, the news and PTT have different rankings of importance. Both media have similar rankings of importance when referring to the content of regions, vulnerable groups, and solutions. In addition, news and PTT differed in their ranking of emotional significance when stating the four attributes of health risk. The intermedia agenda- setting effects including first and second level substantive attributes from social media to traditional media was found, and no opposite effect. Both media failed to note the effect of affective attribute agenda setting from each other. Although actual air pollution data had no impact on the overall health risk coverage or discussion, a significant impact was observed on the second level agenda setting of the two media, including word frequencies of all substantive attributes and affective attributes.
目次 Table of Contents
論文審定書 ..................................................................................................................... i
誌謝 ................................................................................................................................ ii
摘要 ............................................................................................................................... iii
Abstact ......................................................................................................................... iv
第一章 緒論 .................................................................................................................. 1
第一節 研究背景與動機 ...................................................................................... 1
第二節 研究目的 .................................................................................................. 5
第三節 研究問題 .................................................................................................. 7
第二章 文獻探討 .......................................................................................................... 9
第一節 新聞框架理論及分析 .............................................................................. 9
一、理論介紹及框架運用 ............................................................................ 9
二、過往空氣污染與健康風險的研究 ...................................................... 12
三、空氣污染報導運用「疾病框架」的研究 ........................................... 13
第二節 新聞對閱聽眾的影響 ............................................................................ 15
一、議題設定理論 ...................................................................................... 15
二、第一層議題設定 .................................................................................. 15
三、第二層議題設定 .................................................................................. 16
第三節 跨媒體議題設定 .................................................................................... 18
一、社群媒體的普及 .................................................................................. 18
二、定向需求(Need for Orientation, NFO)............................................. 22
三、第一層跨媒體議題設定 ...................................................................... 25
四、第二層跨媒體議題設定 ...................................................................... 26
第三章 研究方法 ........................................................................................................ 31
第一節 樣本收集 ................................................................................................ 31
一、傳統媒體:主流媒體的新聞 .............................................................. 31
二、社群媒體:PTT 的貼文和回應 .......................................................... 31
三、現實空污數據:以PM2.5 濃度做為代表 ........................................... 32
第二節 主要變項定義 ........................................................................................ 33
一、第一層議題設定:報導量與討論量 .................................................. 33
二、第二層議題設定:健康風險的「實質性」和「情感性」屬性 ...... 33
第三節 資料分析 ................................................................................................ 36
一、電腦內容分析 ...................................................................................... 36
二、時間序列分析 ...................................................................................... 38
第四章 分析結果 ........................................................................................................ 43
第一節 空污健康風險屬性的新聞媒體和社群媒體議程 ................................ 43
一、危害度 .................................................................................................. 43
二、暴露度 .................................................................................................. 49
三、脆弱度 .................................................................................................. 54
四、韌性 ...................................................................................................... 56
五、情緒分數 .............................................................................................. 59
第二節 新聞報導與PTT 的時間序列分析 ....................................................... 62
一、單根檢定結果 ...................................................................................... 66
二、向量自迴歸模型(Vector Autoregressions model, VAR)................. 67
三、Granger causality ................................................................................... 74
四、衝擊反應函數 ...................................................................................... 77
第五章 結論與建議 .................................................................................................... 85
第一節 研究發現與討論 .................................................................................... 85
一、空污健康風險屬性的新聞媒體議程 .................................................. 85
二、空污健康風險屬性的PTT 議程 ......................................................... 90
三、新聞與社群媒體的議程比較 .............................................................. 92
四、時間序列分析驗證跨媒體議題設定效果............................................ 93
第二節 研究貢獻與限制 .................................................................................... 97
一、學術貢獻 .............................................................................................. 97
二、實務貢獻 .............................................................................................. 98
三、研究限制 .............................................................................................. 99
參考文獻 .................................................................................................................... 101
附錄 ............................................................................................................................ 122
附錄一 危害度分類和詞頻 .............................................................................. 122
附錄二 脆弱度分類和詞頻 .............................................................................. 141
附錄三 韌性分類和詞頻 .................................................................................. 144
附錄四 R 語言原始程式碼 ............................................................................... 156

圖目錄
圖4-1 臺灣媒體近五年每季平均報導量(取對數)之時間序列圖 ... 63
圖4-2 臺灣媒體近五年每季平均含有危害度詞頻之時間序列圖 ....... 63
圖4-3 臺灣媒體近五年每季平均含有暴露度詞頻之時間序列圖 ....... 64
圖4-4 臺灣媒體近五年每季平均含有脆弱度詞頻之時間序列圖 ....... 64
圖4-5 臺灣媒體近五年每季平均含有韌性詞頻之時間序列圖 ........... 65
圖4-6 臺灣媒體近五年每季平均情緒分數之時間序列圖 ................... 65
圖4-7 臺灣近五年每日PM2.5平均濃度時間序列圖 .............................. 66
圖4-8 新聞媒體與社群媒體各研究變項的跨媒體議題設定效果圖 ... 74
圖4-9 空污數據與兩媒體報導量的正交衝擊反應圖 ........................... 77
圖4-10 空污數據與兩媒體危害度詞頻的正交衝擊反應圖 ................. 78
圖4-11 空污數據與兩媒體暴露度詞頻的正交衝擊反應圖 ................. 78
圖4-12 空污數據與兩媒體脆弱度詞頻的正交衝擊反應圖 ................. 79
圖4-13 空污數據與兩媒體韌性詞頻的正交衝擊反應圖 ..................... 80
圖4-14 空污數據與兩媒體情緒分數的正交衝擊反應圖 ..................... 80

表目錄
表2-1 定向需求(NFO)的組成及水平 ................................................. 23
表2-2 空污風險特徵之NFO水平假 ......................................................... 29
表4-1 空污新聞的疾病詞頻 .................................................................... 45
表4-2 十大死因與空污新聞對應疾病的詞頻與排序 ........................... 46
表4-3 PTT討論空污的疾病詞頻 ............................................................. 47
表4-4 十大死因與PTT討論空污對應疾病的詞頻與排序 ..................... 47
表4-5 新聞媒體與社群媒體危害度詞頻排序比較 ................................ 49
表4-6 新聞媒體與社群媒體危害度分類詞頻排序比較 ....................... 49
表4-7 空污新聞的縣市詞頻 .................................................................... 50
表4-8 空污新聞的地區詞頻 .................................................................... 50
表4-9 空污新聞縣市詞頻排序與實際空污排名比較 ........................... 51
表4-10 PTT討論空污的縣市詞頻 ........................................................... 52
表4-11 PTT討論空污的地區詞頻 ........................................................... 52
表4-12 社群媒體討論空污縣市詞頻排序與實際空污排名比較 ......... 53
表4-13 新聞媒體與社群媒體縣市詞頻排序比較 .................................. 54
表4-14 新聞媒體與社群媒體地區詞頻排序比較 .................................. 54
表4-15 空污新聞的年齡詞頻 .................................................................. 55
表4-16 PTT討論空污的年齡詞頻 ........................................................... 56
表4-17 新聞媒體與社群媒體年齡詞頻排序比較 .................................. 57
表4-18 新聞媒體與社群媒體年齡分類詞頻排序比較 ......................... 57
表4-19 空污新聞的韌性詞頻 .................................................................. 58
表4-20 PTT討論空污的韌性詞頻 ........................................................... 58
表4-21 新聞媒體與社群媒體韌性詞頻排序比較 .................................. 59
表4-22 新聞媒體與社群媒體韌性分類詞頻排序比較 ......................... 60
表4-23 新聞媒體與社群媒體「各別風險特徵」情緒分數排序比較 . 61
表4-24 新聞媒體與社群媒體各研究變項的Spearman等級相關性分析.
結果 ............................................................................................... 62
表4-25 研究變項時間序列定態檢定表 .................................................. 67
表4-26 時間序列模型落後期選擇 .......................................................... 68
表4-27 VAR模型結果 ................................................................................ 70
表4-28 各變項VAR模型 ............................................................................ 71
表4-29 納入三個時間序列模型的Granger causality檢定結果表 ......... 75
表4-30 納入兩個時間序列模型的Granger causality檢定結果表 ......... 76
表4-31 新聞媒體、社群媒體各變項預測誤差的變異數分解 ............. 82
參考文獻 References
地球公民基金會(2012年5月17日)地球公民百日拍攝計畫,揭露高屏空汙的真相!取自https://www.cet-taiwan.org/node/1504。
何索隆(2020年9月8日)台灣空污越來越嚴重?統計事實是……. 。Purus,取自https://www.purus.com.tw/blog/posts/【台灣空污越來越嚴重?統計事實是……】。
何蕙安(2020年6月17日)【路透2020年數位新聞報告】台灣新聞信任度在全球40國家排倒數第三。台灣事實查核中心,取自https://tfctaiwan.org.tw/articles/4008。
林進益(2020)財金時間序列分析:使用R語言。臺北:五南圖書出版股份有限公司。
吳肇銘、蔡毓霖(2021)運用意見探勘於企業聲譽分析之研究-以企業社會責任為主題。管理資訊計算,10:2,92-110。
李蘇竣(2021年3月17日)霾害、致癌物全台之最?公布2020年PM2.5監測:「這縣市」連7年奪空污冠軍。今周刊 EGS新聞,取自 https://esg.businesstoday.com.tw/article/category/180687/post/202103170067/霾害、致癌物全台之最?公布2020年PM2.5監測:「這縣市」連7年奪空污冠軍。
室內空氣品質資訊網(2022年1月28日)室內空氣汙染物的主要來源。空氣品質及噪音管制處,取自 https://iaq.epa.gov.tw/indoorair/introduction_mainSource.aspx。
柯惠新、劉來、朱川燕、陳洲、南雋(2005)兩岸三地報紙災難事件報導研究-以臺灣921地震報導為例。新聞學研究,85,71-109。
徐美苓(2019)風險感知, 價值觀, 議題傳播及空污防制行為意向。新聞學研究,138,25-73。
高潁倢(2021年4月29日)現代人不看新聞了嗎?凱絡媒體週報,取自https://twncarat.wordpress.com/2021/04/29/現代人不看新聞了嗎/
〈都市及區域發展統計彙編〉。上網日期:2022年5月1日,取自中華民國國家發展委員會https://www.ndc.gov.tw/nc_77_4402。
張春炎、楊樺、葉欣誠(2015)自然災難與媒體建構:以 TVBS 新聞為例,重探八八風災新聞論述。環境教育研究,11:1,1-30。
張卿卿、陶振超(2017)《臺灣傳播調查資料庫第一期第五次調查 計畫執行報告》。科技部補助專題研究計畫(編號:MOST 103-2420- H-004-033-SS2),臺北:政治大學傳播學院。
張益勤(2018年1月23日)消基會調查:學生對 PM2.5 空汙防護不足,籲戴
過濾粉塵口罩。親子天下,取自
https://www.parenting.com.tw/article/5076153。
許超群、曾健華、陳啟信、傅彬貴、郭耀昌、蘇一峰、魏裕峰、王金洲(2021)室內空氣污染與健康。台灣胸腔暨重症加護醫學會,取自 https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwig7s_KlO34AhXlQPUHHQ6xDrwQFnoECCEQAQ&url=https%3A%2F%2Fwww.tspccm.org.tw%2Fmedia%2Fdownload%2F10790%2F%3Fauth%3De56af61b18fbcbe4c8ae6cd00f331dd6&usg=AOvVaw3YISXbECkx6NJKKFv79rET 。
郭文平(2015)字彙實踐及媒介再現:語料庫分析方法在總體經濟新聞文本分析運用研究。新聞學研究新聞學研究,125,95-142。
陳亦云(2019年4月18日)2019全球空氣狀況報告:空氣污染讓人均預期壽命減少20個月。HEHO,取自 https://heho.com.tw/archives/46421。
陳韋帆、古倫維(2018)中文情感語意分析套件 CSentiPackage。Journal of Library and Information Science, 44(1), 24-41。
黃金蘭, Chung, C. K., Hui, N., 林以正, 謝亦泰, Lam, B. C., 程威銓, Bond, M. H., Pennebaker, J. W(2012)中文版「語文探索與字詞計算」詞典之建立。中華心理學刊,54:2,185-201。
楊意菁(2020)環境議題的媒體關注與長期報導量分析:以國內外報紙媒體為例。環境教育研究,16:2,1-45。
楊意菁(2021)環境議題的媒體關注與框架分析:以臺灣及美國報紙報導空氣污染議題為例。新聞學研究,147,1-52。
鄒敏惠(2020年10月21日)台灣民眾科學媒體素養調查32.8%經常主動查證。 環境資訊中心,取自https://e-info.org.tw/node/227516。
綠色和平(2017年4月14日)臺灣空氣污染來源是什麼?與空污有關的8個嚴峻事實。取自https://www.greenpeace.org/taiwan/update/13980/臺灣空氣污染來源是什麼?與空污有關的-8-個嚴峻/。
劉揚銘、陳柏璿、胡舜詅、周昱璇(2016年2月1日)。解讀Ptt:台灣最有影響力的網路社群。數位時代,取自https://www.bnext.com.tw/article/38609/bn-2016-01-29-161210-178。
劉蕙苓、羅文輝(2017)數位匯流的新工具採納記者的社群媒體使用與影響評價。新聞學研究,132,107-150。
劉蕙苓、羅文輝(2017)新聞人員對媒體角色認知的變遷與第三人效果。中華傳播學刊,31,191-225。
衛生福利部(2022年6月30日)110年國人死因統計結果。取自 https://www.mohw.gov.tw/cp-16-70314-1.html。
鄭景懋(2021年4月22日)全球空氣最差城市,前百名都在亞洲!威脅超越疫情...空污問題為何難解?商業周刊,取自 https://www.businessweekly.com.tw/international/blog/3006224。
謝明瑞、周信佑(2018年3月30日)台灣空污問題與防治政策。國政研究報告,取自https://www.npf.org.tw/2/18414。
羅偉成、謝瑞豪、詹長權、林先和(2016)台灣可歸因於 PM2.5暴露之死亡負擔。台灣醫學,20:4,396-405。
羅暐智(2018年11月24日)盧秀燕議題設定成功:禿子漢子加持 「燕子」奪台中。風傳媒,取自https://www.storm.mg/article/632793。
Ader, C. R. (1995). A longitudinal study of agenda setting for the issue of environmental pollution. Journalism & Mass Communication Quarterly, 72(2), 300-311.
Amiraslani, F., & Caiserman, A. (2018). From air pollution to airing pollution news: Multi-layer analysis of the representation of environmental news in Iranian newspapers. The Journal of International Communication, 24(2), 262-282.
Apte, J. S., Marshall, J. D., Cohen, A. J., & Brauer, M. (2015). Addressing global mortality from ambient PM2. 5. Environmental science & technology, 49(13), 8057-8066.
Bakan, U., & Melek, G. (2016). First and second level intermedia agenda-setting between international newspapers and twitter during the coverage of the 266th papal election. Akdeniz Üniversitesi İletişim Fakültesi Dergisi(26), 155-177.
Baker, P. (2006). Public discourses of gay men. London, UK: Routledge.
Baker, P., Gabrielatos, C., Khosravinik, M., Krzyżanowski, M., McEnery, T., & Wodak, R. (2008). A useful methodological synergy? Combining critical discourse analysis and corpus linguistics to examine discourses of refugees and asylum seekers in the UK press. Discourse & society, 19(3), 273-306.
Barberá, P., Casas, A., Nagler, J., Egan, P. J., Bonneau, R., Jost, J. T., & Tucker, J. A. (2019). Who leads? Who follows? Measuring issue attention and agenda setting by legislators and the mass public using social media data. American political science review, 113(4), 883-901.
Baumgartner, S. E., & Wirth, W. (2012). Affective priming during the processing of news articles. Media Psychology, 15(1), 1-18.
Beckett, C. (2011). SuperMedia: Saving journalism so it can save the world. John Wiley & Sons.
Blood, R. (2003). Weblogs and journalism: Do they connect. Nieman reports, 57(3), 61-63.
Bogard, C. J., & Sheinheit, I. (2013). Good ol’boy talk versus the blogosphere in the case of former Senator George Allen. Mass Communication and Society, 16(3), 347-368.
Brummett, B. (2018). Techniques of close reading: Sage Publications.
Bryant, J., & Miron, D. (2004). Theory and research in mass communication. Journal of Communication, 54(4), 662–704.
Cacciatore, M. A., Scheufele, D. A., & Iyengar, S. (2016). The end of framing as we know it… and the future of media effects. Mass Communication and Society, 19(1), 7-23.
Camaj, L. (2014). Need for orientation, selective exposure, and attribute agenda-setting effects. Mass Communication and Society, 17(5), 689-712.
Camaj, L., & Weaver, D. H. (2013). Need for orientation and attribute agenda-setting during a US election campaign. International Journal of Communication, 7, 22.
Capello, F. (2018). Basic Principles of Risk Communication in Air Pollution Clinical handbook of air pollution-related diseases . Cham, Switzerland: Springer.
Caple, H., & Bednarek, M. (2015). Rethinking News Values. Journalism. doi: 10.1177/1464884914568078.
Carazo-Barrantes, C. (2021). Agenda-setting in a social media age: Exploring new methodological approaches. The Agenda Setting Journal, 5(1), 31-55.
Carpentier, N. (2011). The concept of participation. If they have access and interact, do they really participate? CM Komunikacija i mediji, 6(21), 13-36.
Ceron, A., Curini, L., & Iacus, S. M. (2016). First-and second-level agenda setting in the Twittersphere: An application to the Italian political debate. Journal of Information Technology & Politics, 13(2), 159-174.
Chan, T.-C., Chen, M.-L., Lin, I.-F., Lee, C.-H., Chiang, P.-H., Wang, D.-W., & Chuang, J.-H. (2009). Spatiotemporal analysis of air pollution and asthma patient visits in Taipei, Taiwan. International Journal of Health Geographics, 8(1), 1-10.
Chandio, A. A., Jiang, Y., & Rehman, A. (2018). Energy consumption and agricultural economic growth in Pakistan: is there a nexus? International Journal of Energy Sector Management.13(3) , 597-609.
Chaudhary, M. (2020). Why is Augmented Dickey–Fuller test (ADF Test) so important in Time Series Analysis. Retrieved August ,7 ,2022, from https://medium.com/@cmukesh8688/why-is-augmented-dickey-fuller-test-adf-test-so-important-in-time-series-analysis-6fc97c6be2f0.
Chavez, M., Marquez, M., Flores, D. J., & Guerrero, M. A. (2018). The news media and environmental challenges in Mexico: The structural deficits in the coverage and reporting by the press News media coverage of environmental challenges in Latin America and the Caribbean (pp. 19-46) Palgrave Macmillan, Cham :Springer.
Chen, Y., & Liu, X. (2021). How Do Environmental News and the Under the Dome Documentary Influence Air-Pollution Knowledge and Risk Perception Among Beijing Residents? SAGE Open, 11(2).
Chong, D., & Druckman, J. N. (2007). Framing theory. Annu. Rev. Polit. Sci., 10, 103-126.
Chong, D., & Wolinsky-Nahmias, Y. (2005). Managing voter ambivalence in growth and conservation campaigns Ambivalence, Politics and Public Policy (pp. 103-125) New York: Springer.
Cinelli, M., Morales, G. D. F., Galeazzi, A., Quattrociocchi, W., & Starnini, M. (2021). The echo chamber effect on social media. Proceedings of the National Academy of Sciences, 118(9).
Clark, E. M., James, T., Jones, C. A., Alapati, A., Ukandu, P., Danforth, C. M., & Dodds, P. S. (2018). A sentiment analysis of breast cancer treatment experiences and healthcare perceptions across twitter. arXiv preprint arXiv:1805.09959.
Coogan, P. F., White, L. F., Jerrett, M., Brook, R. D., Su, J. G., Seto, E., Burnett, R., R, J., Rosenberg, L. (2012). Air pollution and incidence of hypertension and diabetes mellitus in black women living in Los Angeles. Circulation, 125(6), 767-772.
Cottle, S. (2009). Global crises in the news: Staging new wars, disasters and climate change. International Journal of Communication, 3, 24.
Crouse, D. L., Peters, P. A., van Donkelaar, A., Goldberg, M. S., Villeneuve, P. J., Brion, O., . . . Pope III, C. A. (2012). Risk of nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine particulate matter: a Canadian national-level cohort study. Environmental health perspectives, 120(5), 708-714.
Dong, X., & Lian, Y. (2021). A review of social media-based public opinion analyses: Challenges and recommendations. Technology in Society, 67, 101724.
Dunning, T. E. (1993). Accurate methods for the statistics of surprise and coincidence. Computational linguistics, 19(1), 61-74.
Edwards, G. C., & Wood, B. D. (1999). Who influences whom? The president, Congress, and the media. American political science review, 93(2), 327-344.
Enders, W. (2008). Applied econometric time series: John Wiley & Sons.
Entman, R. M. (1993). Framing: Towards clarification of a fractured paradigm. McQuail's reader in mass communication theory, 390-397.
Evatt, D., & Ghanem, S. (2001). Building a scale to measure salience. Paper presented at the World Association of Public Opinion Research annual conference, Rome, Italy.
Field, C. B., Barros, V., Stocker, T. F., & Dahe, Q. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change: Cambridge University Press.
Fonseca, J. R. (2015). An empirical examination of the relationship between contemporary media exposure patterns and different audience characteristics. International Journal of Advanced Media and Communication, 5(4), 302-320.
Galli, S., & Askenase, P. (1986). The Reticuloendothelial System: A Comprehensive Treatise. Hypersensitivity. IX. Plenum, 321-369.
Galli, S. J., Tsai, M., & Piliponsky, A. M. (2008). The development of allergic inflammation. Nature, 454(7203), 445-454.
Glascock, J. L., Lu, C., & So, R. W. (2000). Further evidence on the integration of REIT, bond, and stock returns. The Journal of Real Estate Finance and Economics, 20(2), 177-194.
Gollust, S. E., & Lantz, P. M. (2009). Communicating population health: print news media coverage of type 2 diabetes. Social Science & Medicine, 69(7), 1091-1098.
Greenberg, M. R., Sachsman, D. B., Sandman, P. M., & Salomone, K. L. (1989). Network evening news coverage of environmental risk. Risk Analysis, 9(1), 119-126.
Griffin, R. J., Dunwoody, S., & Neuwirth, K. (1999). Proposed model of the relationship of risk information seeking and processing to the development of preventive behaviors. Environmental research, 80(2), S230-S245.
Groshek, J., & Clough Groshek, M. (2013). Agenda trending: Reciprocity and the predictive capacity of social network sites in intermedia agenda setting across issues over time. Available at SSRN 2199144.
Gu, H., Cao, Y., Elahi, E., & Jha, S. K. (2019). Human health damages related to air pollution in China. Environmental Science and Pollution Research, 26(13), 13115-13125.
Guo, L. (2012). The application of social network analysis in agenda setting research: A methodological exploration. Journal of broadcasting & electronic media, 56(4), 616-631.
Guo, L. (2017). Agenda‐Setting: Individual‐Level Effects Versus Aggregate‐Level Effects. The International Encyclopedia of Media Effects, 1-13.
Guo, L., & McCombs, M. (2011). Network agenda setting: A third level of media effects. Paper presented at the annual conference of the International Communication Association, Boston, MA, May 26-30.
Guo, L., & Vargo, C. (2020). “Fake news” and emerging online media ecosystem: An integrated intermedia agenda-setting analysis of the 2016 US presidential election. Communication research, 47(2), 178-200.
Harder, R. A., Sevenans, J., & Van Aelst, P. (2017). Intermedia agenda setting in the social media age: How traditional players dominate the news agenda in election times. The International Journal of Press/Politics, 22(3), 275-293.
Hase, V., Mahl, D., Schäfer, M. S., & Keller, T. R. (2021). Climate change in news media across the globe: An automated analysis of issue attention and themes in climate change coverage in 10 countries (2006–2018). Global Environmental Change, 70, 102353.
He, P., Zhang, Y., Yuan, Y., Qiao, Y., Xin, L., & Zou, X. (2019). The relationship between environmental taxation, environmental performance and economic growth: comparative study of Sweden and China 1985-2016. Ekoloji, 28(107), 401-410.
Hollander, B. A. (2008). Tuning out or tuning elsewhere? Partisanship, polarization, and media migration from 1998 to 2006. Journalism & Mass Communication Quarterly, 85(1), 23-40.
Hswen, Y., Qin, Q., Brownstein, J. S., & Hawkins, J. B. (2019). Feasibility of using social media to monitor outdoor air pollution in London, England. Preventive medicine, 121, 86-93.
Jones, K. O. (2017). Agenda setting in health and risk messaging. In Oxford Research Encyclopedia of Communication.
Jung, C.-R., Chen, W.-T., Tang, Y.-H., & Hwang, B.-F. (2019). Fine particulate matter exposure during pregnancy and infancy and incident asthma. Journal of Allergy and Clinical Immunology, 143(6), 2254-2262. e2255.
Jung, C.-R., Lin, Y.-T., & Hwang, B.-F. (2013). Air pollution and newly diagnostic autism spectrum disorders: a population-based cohort study in Taiwan. PloS one, 8(9), e75510.
Kahneman, D., Slovic, S. P., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases: Cambridge university press.
Kan, H., London, S. J., Chen, H., Song, G., Chen, G., Jiang, L., . . . Chen, B. (2007). Diurnal temperature range and daily mortality in Shanghai, China. Environmental research, 103(3), 424-431.
Kaniss, P. (1991). Making local news: University of Chicago Press.
Kennedy, P. (2008). A guide to econometrics: John Wiley & Sons.
Kim, K., & McCombs, M. (2007). News story descriptions and the public's opinions of political candidates. Journalism & Mass Communication Quarterly, 84(2), 299-314.
Kim, Y. (2013). Agenda Setting in a 2.0 World: New Agendas in Communication (pp. 65–81). New York, NY: Routledge.
Kitzinger, J. (1999). Researching risk and the media. Health, risk & society, 1(1), 55-69.
Kofman, S. (1993). Nietzsche and metaphor: A&C Black.
Krämer, U., Herder, C., Sugiri, D., Strassburger, K., Schikowski, T., Ranft, U., & Rathmann, W. (2010). Traffic-related air pollution and incident type 2 diabetes: results from the SALIA cohort study. Environmental health perspectives, 118(9), 1273-1279.
Krippendorff, K. (1993). Major metaphors of communication and some constructivist reflections on their use. Cybernetics & human knowing, 2(1), 3-25.
Krippendorff, K. (2017). Three concepts to retire. Annals of the International Communication Association, 41(1), 92-99.
Künzli, N., Jerrett, M., Garcia-Esteban, R., Basagaña, X., Beckermann, B., Gilliland, F., . . . Mack, W. J. (2010). Ambient air pollution and the progression of atherosclerosis in adults. PloS one, 5(2), 9096.
Lai, T., To, W. M., Lo, W., Choy, Y. S., & Lam, K. (2011). The causal relationship between electricity consumption and economic growth in a Gaming and Tourism Center: The case of Macao SAR, the People’s Republic of China. Energy, 36(2), 1134-1142.
Larson, B. (2011). Metaphors for environmental sustainability. London: Yale University Press.
Lee, B., Lancendorfer, K. M., & Lee, K. J. (2005). Agenda-setting and the Internet: The intermedia influence of Internet bulletin boards on newspaper coverage of the 2000 general election in South Korea. Asian Journal of Communication, 15(1), 57-71.
Liew, V. K.-S. (2004). Which lag length selection criteria should we employ? Economics bulletin, 3(33), 1-9.
Linnenluecke, M. K., & Marrone, M. (2021). Air pollution, human health and climate change: newspaper coverage of Australian bushfires. Environmental Research Letters, 16(12), 125003.
Little, R. (2007). The balance of power in international relations: metaphors, myths, and models. Cambridge: Cambridge University Press.
Lowery, C. (2009). An explosion prompts rethinking of Twitter and Facebook. Nieman reports, 63(3), 32.
Ludtke, M. (2009). Let’s talk: Journalism and social media. Nieman reports, 3(4), 4.
Lütkepohl, H. (2010). Impulse response function Macroeconometrics and time series analysis (pp. 145-150) Palgrave Macmillan, London: Springer.
Maibach, E. W., Roser-Renouf, C., & Leiserowitz, A. (2008). Communication and marketing as climate change–intervention assets: A public health perspective. American journal of preventive medicine, 35(5), 488-500.
Makaringe, S. C., & Khobai, H. (2018). The effect of unemployment on economic growth in South Africa (pp.1994-2016).
Makri, A., & Stilianakis, N. I. (2008). Vulnerability to air pollution health effects. International journal of hygiene and environmental health, 211(3-4), 326-336.
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: a review. Frontiers in public health, 14.
Martinson, B. E., & Hindman, D. B. (2005). Building a health promotion agenda in local newspapers. Health Education Research, 20(1), 51-60.
Matthes, J. (2006). The need for orientation towards news media: Revising and validating a classic concept. International Journal of Public Opinion Research, 18(4), 422-444.
Matthes, J. (2008). Need for orientation as a predictor of agenda-setting effects: Causal evidence from a two-wave panel study. International Journal of Public Opinion Research, 20(4), 440-453.
Mayer, B. (2012). ‘Relax and take a deep breath’: Print media coverage of asthma and air pollution in the United States. Social Science & Medicine, 75(5), 892-900.
Mazur, A. (2016). How did the fracking controversy emerge in the period 2010-2012? Public Understanding of Science, 25(2), 207-222.
McComas, K. A. (2003). Citizen satisfaction with public meetings used for risk communication. Journal of Applied Communication Research, 31(2), 164-184.
McCombs, M. (2004). Setting the agenda: Mass media and public opinion. Cambridge, UK: Polity.
McCombs, M. (2005). A look at agenda-setting: Past, present and future. Journalism studies, 6(4), 543-557.
McCombs, M., & Lee, J. (2013). Continuing evolution of agenda-setting theory In E. Scharrer (Ed.), Media effects/media psychology, (Vol. 5, pp. 41–62). Boston, MA: Wiley-Blackwell.
McCombs, M., & Stroud, N. J. (2014). Psychology of agenda-setting effects: Mapping the paths of information processing. Review of Communication Research, 2, 68-93.
McCombs, M., & Weaver, D. (1973). Voters’ need for orientation and use of mass communication. Paper presented at the International Communication Association, Montreal, Canada.
McCombs, M. E., & Shaw, D. L. (1972). The agenda-setting function of mass media. Public opinion quarterly, 36(2), 176-187.
McGregor, S. C. (2019). Social media as public opinion: How journalists use social media to represent public opinion. Journalism, 20(8), 1070-1086.
McGuire, W. (1974). Psychological motives and communication gratification. The Uses of Mass Communications: Current Perspectives on Gratifications Research, Blumler , J.F. & Katz, J. (eds) , pp. 167-196. Sage , Beverly Hills, CA, USA.
Meister, K., Johansson, C., & Forsberg, B. (2012). Estimated short-term effects of coarse particles on daily mortality in Stockholm, Sweden. Environmental health perspectives, 120(3), 431-436.
Meraz, S. (2009). Is there an elite hold? Traditional media to social media agenda setting influence in blog networks. Journal of computer-mediated communication, 14(3), 682-707.
Meraz, S. (2011). Using time series analysis to measure intermedia agenda-setting influence in traditional media and political blog networks. Journalism & Mass Communication Quarterly, 88(1), 176-194.
Meraz, S., & Papacharissi, Z. (2013). Networked gatekeeping and networked framing on Egypt. The International Journal of Press/Politics, 18(2), 138-166.
Messing, S., & Westwood, S. J. (2014). Selective exposure in the age of social media: Endorsements trump partisan source affiliation when selecting news online. Communication research, 41(8), 1042-1063.
Moyer, A., Greener, S., Beauvais, J., & Salovey, P. (1995). Accuracy of health research reported in the popular press: Breast cancer and mammography. Health Communication, 7(2), 147-161.
Murukutla, N., Kumar, N., & Mullin, S. (2019). A review of media effects: Implications for media coverage of air pollution and cancer. leukemia, 2, 7-10.
Murukutla, N., Negi, N. S., Puri, P., Mullin, S., & Onyon, L. (2017). Online media coverage of air pollution risks and current policies in India: a content analysis. WHO South-East Asia Journal of Public Health, 6(2), 41-50.
Mutz, D. C. (2001). Facilitating communication across lines of political difference: The role of mass media. American political science review, 95(1), 97-114.
Myers, T. A., Nisbet, M. C., Maibach, E. W., & Leiserowitz, A. A. (2012). A public health frame arouses hopeful emotions about climate change. Climatic change, 113(3), 1105-1112.
Næss, Ø., Nafstad, P., Aamodt, G., Claussen, B., & Rosland, P. (2007). Relation between concentration of air pollution and cause-specific mortality: four-year exposures to nitrogen dioxide and particulate matter pollutants in 470 neighborhoods in Oslo, Norway. American journal of epidemiology, 165(4), 435-443.
Newman, N. (2009). The rise of social media and its impact on mainstream journalism. Reuters Institute for the Study of Journalism, Department of Politics and International Relations, University of Oxford.
Nguyen, A., & Western, M. (2006). The Complementary Relationship between the Internet and Traditional Mass Media: The Case of Online News and Information. Information Research: An International Electronic Journal, 11(3), 3.
Nisbet, M. C. (2009). Communicating climate change: Why frames matter for public engagement. Environment: Science and policy for sustainable development, 51(2), 12-23.
O'Keefe, D. J., & Jensen, J. D. (2007). The relative persuasiveness of gain-framed loss-framed messages for encouraging disease prevention behaviors: A meta-analytic review. Journal of health communication, 12(7), 623-644.
O'Keefe, D. J., & Nan, X. (2012). The relative persuasiveness of gain-and loss-framed messages for promoting vaccination: A meta-analytic review. Health Communication, 27(8), 776-783.
O'neill, S., & Nicholson-Cole, S. (2009). “Fear won't do it” promoting positive engagement with climate change through visual and iconic representations. Science Communication, 30(3), 355-379.
Organization, W. H. (2004). Health aspects of air pollution: results from the WHO project" Systematic review of health aspects of air pollution in Europe".
Ostro, B., Broadwin, R., Green, S., Feng, W.-Y., & Lipsett, M. (2006). Fine particulate air pollution and mortality in nine California counties: results from CALFINE. Environmental health perspectives, 114(1), 29-33.
Overholser, G. (2009). Finding a Good Fit-Journalism and Social Media-What Is Journalism's Place in Social Media? Nieman reports, 63(3), 6.
Pan, Z., & Kosicki, G. M. (1993). Framing analysis: An approach to news discourse. Political communication, 10(1), 55-75.
Peake, J. S. (2017). Presidential Agenda-Setting on the Economy during the “Great Recession”. American Review of Politics, 36(1), 75-100.
Pennebaker, J. W., Francis, M. E., & Booth, R. J. (2001). Linguistic inquiry and word count: LIWC 2001. Mahway: Lawrence Erlbaum Associates, 71(2001), 2001.
Petrovic, S., Osborne, M., McCreadie, R., Macdonald, C., Ounis, I., & Shrimpton, L. (2013). Can twitter replace newswire for breaking news? Paper presented at the Proceedings of the international AAAI conference on web and social media.
Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335-346.
Picard, R. G. (2009). Blogs, tweets, social media, and the news business. Nieman reports, 63(3), 11.
Pinzón, K. (2018). Dynamics between energy consumption and economic growth in Ecuador: A granger causality analysis. Economic Analysis and Policy, 57, 88-101.
Pollack, H. N. (2005). Uncertain Science... uncertain World: Cambridge University Press.
Pope III, C. A., Coleman, N., Pond, Z. A., & Burnett, R. T. (2020). Fine particulate air pollution and human mortality: 25+ years of cohort studies. Environmental research. doi: https://doi.org/10.1016/j.envres.2019.108924.
Powell, M., Dunwoody, S., Griffin, R., & Neuwirth, K. (2007). Exploring lay uncertainty about an environmental health risk. Public Understanding of Science, 16(3), 323-343.
Proietti, E., Röösli, M., Frey, U., & Latzin, P. (2013). Air pollution during pregnancy and neonatal outcome: a review. Journal of aerosol medicine and pulmonary drug delivery, 26(1), 9-23.
Puett, R. C., Hart, J. E., Schwartz, J., Hu, F. B., Liese, A. D., & Laden, F. (2011). Are particulate matter exposures associated with risk of type 2 diabetes? Environmental health perspectives, 119(3), 384-389.
Raaschou-Nielsen, O., Andersen, Z. J., Beelen, R., Samoli, E., Stafoggia, M., Weinmayr, G., . . . Brunekreef, B. (2013). Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). The lancet oncology, 14(9), 813-822.
Ramírez, A. S., Ramondt, S., Van Bogart, K., & Perez-Zuniga, R. (2019). Public awareness of air pollution and health threats: challenges and opportunities for communication strategies to improve environmental health literacy. Journal of health communication, 24(1), 75-83.
Ramondt, S., & Ramírez, A. S. (2020). Media reporting on air pollution: health risk and precautionary measures in national and regional newspapers. International Journal of Environmental Research and Public Health, 17(18), 6516.
Renzi, B. G., Cotton, M., Napolitano, G., & Barkemeyer, R. (2017). Rebirth, devastation and sickness: Analyzing the role of metaphor in media discourses of nuclear power. Environmental Communication, 11(5), 624-640.
Rimé, B. (2007). Interpersonal emotion regulation. Handbook of emotion regulation, 1, 466-468.
Ritz, B., & Wilhelm, M. (2008). Ambient air pollution and adverse birth outcomes: methodologic issues in an emerging field. Basic & clinical pharmacology & toxicology, 102(2), 182-190.
Roessler, P. (1999). The individual agenda-designing process: How interpersonal communication, egocentric networks, and mass media shape the perception of political issues by individuals. Communication research, 26(6), 666-700.
Rogstad, I. (2016). Is Twitter just rehashing? Intermedia agenda setting between Twitter and mainstream media. Journal of Information Technology & Politics, 13(2), 142-158.
Romieu, I., Gouveia, N., Cifuentes, L. A., de Leon, A. P., Junger, W., Vera, J., Strappa, V., Hurtado-Díaz, M., Miranda-Soberanis, V., Rojas-Bracho, L., Carbajal-Arroyo, L., Tzintzun-Cervantes, G. (2012). Multicity study of air pollution and mortality in Latin America (the ESCALA study). Res Rep Health Eff Inst, 171, 5-86.
Ruggiero, T. E. (2001). Electronic mail and listservs: Effective journalistic ethical fora? Journal of Mass Media Ethics, 16(4), 293-304.
Russell Neuman, W., Guggenheim, L., Mo Jang, S., & Bae, S. Y. (2014). The dynamics of public attention: Agenda-setting theory meets big data. Journal of Communication, 64(2), 193-214.
Said, S. E., & Dickey, D. A. (1984). Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika, 71(3), 599-607.
Sapkota, A., Chelikowsky, A. P., Nachman, K. E., Cohen, A. J., & Ritz, B. (2012). Exposure to particulate matter and adverse birth outcomes: a comprehensive review and meta-analysis. Air Quality, Atmosphere & Health, 5(4), 369-381.
Schultz, F., Kleinnijenhuis, J., Oegema, D., Utz, S., & Van Atteveldt, W. (2012). Strategic framing in the BP crisis: A semantic network analysis of associative frames. Public Relations Review, 38(1), 97-107.
Seale, C. (2003). Health and media: an overview. Sociology of health & illness, 25(6), 513-531.
Shapiro, M. A., & Bolsen, T. (2018). Transboundary air pollution in South Korea: An analysis of media frames and public attitudes and behavior. East Asian Community Review, 1(3), 107-126.
Sheafer, T. (2007). How to evaluate it: The role of story-evaluative tone in agenda setting and priming. Journal of Communication, 57(1), 21-39.
Shehata, A., & Strömbäck, J. (2013). Not (yet) a new era of minimal effects: A study of agenda setting at the aggregate and individual levels. The International Journal of Press/Politics, 18(2), 234-255.
Shehata, A., & Strömbäck, J. (2021). Learning political news from social media: Network media logic and current affairs news learning in a high-choice media environment. Communication research, 48(1), 125-147.
Skoler, M. (2009). Why the news media became irrelevant--and how social media can help. Nieman reports, 63(3), 38-39.
Sniderman, P. M., & Theriault, S. M. (2004). The structure of political argument and the logic of issue framing. Studies in public opinion, 133-165.
Stassen, W. (2010). Your news in 140 characters: exploring the role of social media in journalism. Global Media Journal-African Edition, 4(1), 116-131.
Su, Y., & Borah, P. (2019). Who is the agenda setter? Examining the intermedia agenda-setting effect between Twitter and newspapers. Journal of Information Technology & Politics, 16(3), 236-249.
Su, Y., Hu, J., & Lee, D. K. L. (2020). Delineating the transnational network agenda-setting model of mainstream newspapers and Twitter: A machine-learning approach. Journalism studies, 21(15), 2113-2134.
Su, Y., & Xiao, X. (2021). Mapping the intermedia agenda setting (IAS) literature: Current trajectories and future directions. The Agenda Setting Journal, 5(1), 56-83.
Takeshita, T. (2006). Current critical problems in agenda-setting research. International Journal of Public Opinion Research, 18(3), 275-296.
Tewksbury, D. (2005). The seeds of audience fragmentation: Specialization in the use of online news sites. Journal of broadcasting & electronic media, 49(3), 332-348.
Thorson, K., & Wells, C. (2016). Curated flows: A framework for mapping media exposure in the digital age. Communication Theory, 26(3), 309-328.
Tolman, E. C. (1932). Purposive behavior in animals and men: Univ of California Press.
Towner, T. L., & Muñoz, C. L. (2018). Picture perfect? The role of Instagram in issue agenda setting during the 2016 presidential primary campaign. Social science computer review, 36(4), 484-499.
Valenzuela, S., Puente, S., & Flores, P. M. (2017). Comparing disaster news on Twitter and television: An intermedia agenda setting perspective. Journal of broadcasting & electronic media, 61(4), 615-637.
Van Den Heijkant, L., Van Selm, M., Hellsten, I., & Vliegenthart, R. (2019). Intermedia agenda-setting in a policy reform debate. International Journal of Communication, 13, 23.
Van Gorp, B. (2007). The constructionist approach to framing: Bringing culture back in. Journal of Communication, 57(1), 60-78.
Vu, H. T., McCombs, M., Russell, A., & Pain, P. (2020). Deepening the concept of ‘compelling arguments’: Linking substantive and affective dimensions of attributes in assessing the effects of climate change news on public opinion. The Agenda Setting Journal, 4(2), 219-240.
Walker, K. (2019). State of Global Air 2019 Report. Retrieved from https://www.healthdata.org/news-release/state-global-air-2019-report.
Weaver, D. (1977). Political issues and voter need for orientation. In D. L. Shaw and ME McCombs (Eds.), The emergence of American political issues (pp. 107–120): St. Paul, MN: West.
Wu, M. (2006). Framing AIDS in China: A comparative analysis of US and Chinese wire news coverage of HIV/AIDS in China. Asian Journal of Communication, 16(3), 251-272.
Zaller, J. R. (1992). The nature and origins of mass opinion: Cambridge university press.
Zivot, E., & Wang, J. (2006). Modeling financial time series with S-PLUS (Vol. 2). New York:Springer.
Zu, G. (2015). Framing pollution: an analysis of the coverage of air pollution in China in 2013 by ChinaDaily. com. Ohio University.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code