Responsive image
博碩士論文 etd-1121118-102927 詳細資訊
Title page for etd-1121118-102927
論文名稱
Title
海洋修飾物於大鼠神經病變痛之鎮痛作用
Antinociceptive effects of marine modifying compound in neuropathic rats
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
135
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-12-07
繳交日期
Date of Submission
2018-12-21
關鍵字
Keywords
能量代謝、止痛、神經病變痛、坐骨神經結紮、褪黑激素
analgesia, neuropathic pain, Chronic Constriction Injury (CCI), energy metabolism, melatonin
統計
Statistics
本論文已被瀏覽 5701 次,被下載 0
The thesis/dissertation has been browsed 5701 times, has been downloaded 0 times.
中文摘要
神經病變痛是一種難以治癒之症候群,其發生之原因及其複雜,包括酒精、化療、糖尿病、HIV病毒、自體免疫、神經缺損或缺血等。根據統計,有百分之7至8的人口患有神經病變痛。在世界七個主要藥物市場(美國、日本、法國、德國、義大利、西班牙、英國)每年花費之藥物金額高達240億美元,預測2020年將會達到高達360億美元。一般之止痛藥如非類固醇抗發炎藥物,對於神經病變痛之治療效果不佳,然而第一線用藥gabapatin雖然擁有良好之治療效果,但它也同時有許多副作用(如:麻疹、呼吸困難、臉部腫脹、嘴唇腫脹、喉嚨腫脹)。所以我們需要更有效及更少副作用之藥物來治療神經病變痛。我們利用化學資訊學方法研究一個海洋化合物的前驅物,搜尋到化合物WH4可能具有類似的功能。本研究我們使用坐骨神經慢性壓迫 (chronic constriction injury; CCI)大鼠作為神經病變痛之動物模式。結果發現,WH4具有良好之鎮痛效果,其作用機制可能和能量代謝及褪黑激素的受體有關。同時,我們於實驗中發現WH4無明顯之副作用,未來具潛力成為治療神經病變痛之新藥物。
Abstract
Neuropathic pain is a syndrome which is difficult to cure, and have many complex causes include alcohol, chemotherapy, diabetes, HIV virus, autoimmune, nerve compression or ischemia, etc. In statistic, there are 7-8 percent of people has neuropathic pain. In seven world major pharmaceutical market (America, Japan, France, Germany, Italy, Spain, United Kingdom), the drugs of neuropathic pain were sold 24 billion dollars, and it will be elevated up to 36 billion dollars in 2020. But the common analgesic drug like nonsteroidal anti-inflammatory drugs (NSAIDs) has no effect. The first-line treatment, Gabapatin, has good efficiency, but it also has severe side effect. (e.g., hives; difficult breathing; swelling of your face, lips, tongue, or throat.) In that, we need to develop more drugs which is more effective and less side effect to treat neuropathic pain. In this study, we used chronic constriction injury (CCI) rat as the animal model of neuropathic pain. We use the modified marine compounds (WH4) as agent. In result, WH4 has excellent analgesic effects. Its analgesic effect is even better than that of Gabapatin.The results showed that the mechanism may be related to melatonin MT2 receptor and metabolism, and the change maybe a new way to treat neuropathic pain. We have not found apparent side effect of WH4 in rat still now, it may be a potential compound to develop a new drug in treating neuropathic pain.
目次 Table of Contents
國立中山大學研究生學位論文審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 xi
中英文對照及縮寫表 xii
前言 1
疼痛定義與種類 1
神經病變痛的流行病學 2
神經病變痛之成因與症狀 3
神經病變痛臨床藥物之市場現況 5
神經病變痛形成機制 8
能量代謝與疼痛之關聯性 14
褪黑激素受體(Melatonin receptor)於神經及疼痛中扮演之角色 18
神經病變型疼痛的藥物開發模式 19
海洋藥物目前的發展 23
研究目的 25
材料與方法 26
實驗動物 26
化合物來源 26
化合物受體結合測試 27
椎管製備及椎管插管手術 28
坐骨神經結紮誘發神經病變性疼痛模式 28
疼痛行為評估方法 29
樣本組織收集及冷凍切片 30
組織免疫化學螢光染色 30
實驗動物設計與分組 32
數據分析 34
結果 37
討論 88
WH4與臨床藥物之效果比較 88
CCI大鼠給予WH4預防CCI手術誘發疼痛行為 89
WH4對於正常大鼠之行為反應 90
CCI大鼠給予WH4之脊髓背角細胞及分子層次的影響 90
WH4對於能量代謝之影響 90
WH4對於發炎之影響 92
WH4對於氧化壓力及血管新生之影響 93
WH4對於褪黑激素MT2亞型受體之作用分析 94
抑制褪黑激素MT2亞型受體活化對WH4於神經病變痛鎮痛作用之影響 96
WH4止痛效果與可能之機轉分析 97
參考文獻 101
參考文獻 References
1. Taxonomy. I.Associatio; Bogduk N., and Merskey H., Classification of chronic pain : descriptions of chronic pain syndromes and definitions of pain terms. 2nd ed. 1994, Seattle: IASP Press.
2. Woolf C. J., What is this thing called pain? Journal of Clinical Investigation, 2010. 120(11): p. 3742-3744.
3. Woolf C. J. and Ma Q., Nociceptors--noxious stimulus detectors. Neuron, 2007. 55(3): p. 353-364.
4. Dhaka Ajay; Viswanath Veena, and Patapoutian Ardem, TRP Ion Channels and Temperature Sensation. Annual Review of Neuroscience, 2006. 29: p. 135-161.
5. Juhl G. I.; Jensen T. S.; Norholt S. E., and Svensson P., Central sensitization phenomena after third molar surgery: a quantitative sensory testing study. European Journal of Pain (London, England), 2008. 12(1): p. 116-127.
6. K Michaud; C Bombardier, and P Emery, Quality of life in patients with rheumatoid arthritis:Does abatacept make a difference? Clin Exp Rheumatol.Clin Exp Rheumatol., 2007. 25(5 Suppl 46): p. S35-45.
7. Staud R.; Robinson M. E., and Price D. D., Temporal summation of second pain and its maintenance are useful for characterizing widespread central sensitization of fibromyalgia patients. Journal of Pain, 2007. 8(11): p. 893-901.
8. H Merskey and N Bogduk, Classification of chronic pain. 2nd ed. 1994, Seattle: IASP Press.
9. Koneti Kiran K. and Jones Martin, Management of acute pain. Surgery (Oxford), 2016. 34(2): p. 84-90.
10. Baron R.; Koppert W., and Strumpf M., Praktische Schmerzmedizin. Entstehung der Schmerzchronifizierung, ed. RD Treede. 2011, Herausgeber: Springer.
11. Bouhassira D.; Lanteri-Minet M.; Attal N.; Laurent B., and Touboul C., Prevalence of chronic pain with neuropathic characteristics in the general population. Pain, 2008. 136(3): p. 380-387.
12. Torrance N.; Smith B. H.; Bennett M. I., and Lee A. J., The epidemiology of chronic pain of predominantly neuropathic origin. Results from a general population survey. Journal of Pain, 2006. 7(4): p. 281-289.
13. Poleshuck E. L.; Katz J.; Andrus C. H.; Hogan L. A.; Jung B. F.; Kulick D. I., and Dworkin R. H., Risk factors for chronic pain following breast cancer surgery: a prospective study. Journal of Pain, 2006. 7(9): p. 626-634.
14. P Anand and R Birch, Restoration of sensory function and lack of long-term chronic pain syndromes after brachial plexus injury in human neonates. Brain, 2002. 125: p. 113-122.
15. Htut M.; Misra P.; Anand P.; Birch R., and Carlstedt T., Pain phenomena and sensory recovery following brachial plexus avulsion injury and surgical repairs. Journal of Hand Surgery (Edinburgh, Scotland), 2006. 31(6): p. 596-605.
16. Moss A.; Beggs S.; Vega-Avelaira D.; Costigan M.; Hathway G. J.; Salter M. W., and Fitzgerald M., Spinal microglia and neuropathic pain in young rats. Pain, 2007. 128(3): p. 215-224.
17. RH Dworkin; M Backonja; MC Rowbotham; RR Allen; CR Argoff; GJ Bennett; MC Bushnell; JT Farrar; BS Galer; JA Haythornthwaite; DJ Hewitt; JD Loeser; MB Max; M Saltarelli; KE Schmader; C Stein; D Thompson; DC Turk; MS Wallace; LR Watkins, and SM Weinstein, Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations. Arch Neurol., 2003. 60(11): p. 1524-1534.
18. Ducreux D.; Attal N.; Parker F., and Bouhassira D., Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia. Brain, 2006. 129(Pt 4): p. 963-976.
19. Gilron Ian; Jensen Troels S, and Dickenson Anthony H, Combination pharmacotherapy for management of chronic pain: from bench to bedside. Lancet Neurology, 2013. 12: p. 1084-1095.
20. Kehlet Henrik; Jensen Troels S., and Woolf Clifford J., Persistent postsurgical pain: risk factors and prevention. The Lancet, 2006. 367(9522): p. 1618-1625.
21. Kalliomaki M. L.; Meyerson J.; Gunnarsson U.; Gordh T., and Sandblom G., Long-term pain after inguinal hernia repair in a population-based cohort; risk factors and interference with daily activities. European Journal of Pain (London, England), 2008. 12(2): p. 214-225.
22. Ketz A. K., The experience of phantom limb pain in patients with combat-related traumatic amputations. Archives of Physical Medicine and Rehabilitation, 2008. 89(6): p. 1127-1132.
23. Maguire M. F.; Ravenscroft A.; Beggs D., and Duffy J. P., A questionnaire study investigating the prevalence of the neuropathic component of chronic pain after thoracic surgery. European Journal of Cardio-Thoracic Surgery, 2006. 29(5): p. 800-805.
24. Jensen Troels S. and Baron Ralf, Translation of symptoms and signs into mechanisms in neuropathic pain. Pain, 2003. 102(1): p. 1-8.
25. Jensen Troels S. and Finnerup Nanna B., Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. The Lancet Neurology, 2014. 13(9): p. 924-935.
26. Health in the European Union: special eurobarometer 272. 2007, http://ec.Europa.Eu/health/ph_publication/eb_health_en.Pdf.: European Commission.
27. Gaskin D. J. and Richard P., The economic costs of pain in the United States. Journal of Pain, 2012. 13(8): p. 715-724.
28. DiBonaventura M. D.; Sadosky A.; Concialdi K.; Hopps M.; Kudel I.; Parsons B.; Cappelleri J. C.; Hlavacek P.; Alexander A. H.; Stacey B. R.; Markman J. D., and Farrar J. T., The prevalence of probable neuropathic pain in the US: results from a multimodal general-population health survey. Journal of Pain Research, 2017. 10: p. 2525-2538.
29. Global Neuropathy Pain Treatment Market 2018 by Manufacturers, Countries, Type and Application, Forecast to 2023. 2018, GRN Research Pvt. Ltd. : https://www.marketresearchnest.com/Global-Neuropathy-Pain-Treatment-Market-2018-by-Manufacturers-Countries-Type-and-Application-Forecast-to-2023.html.
30. Liang S. Y.; Li C. C.; Wu S. F.; Wang T. J., and Tsay S. L., The prevalence and impact of pain among Taiwanese oncology outpatients. Pain Management Nursing, 2011. 12(4): p. 197-205.
31. Jih J. S.; Chen Y. J.; Lin M. W.; Chen Y. C.; Chen T. J.; Huang Y. L.; Chen C. C.; Lee D. D.; Chang Y. T.; Wang W. J., and Liu H. N., Epidemiological features and costs of herpes zoster in Taiwan: a national study 2000 to 2006. Acta Dermato-Venereologica, 2009. 89(6): p. 612-616.
32. Tsai Y. F.; Liu L. L., and Chung S. C., Pain prevalence, experiences, and self-care management strategies among the community-dwelling elderly in Taiwan. Journal of Pain and Symptom Management, 2010. 40(4): p. 575-581.
33. Feng C. K.; Chen M. L., and Mao I. F., Prevalence of and risk factors for different measures of low back pain among female nursing aides in Taiwanese nursing homes. BMC Musculoskeletal Disorders, 2007. 8: p. 52.
34. Morlion B., Pharmacotherapy of low back pain: targeting nociceptive and neuropathic pain components. Current Medical Research and Opinion, 2011. 27(1): p. 11-33.
35. Kalso E.; Edwards J. E.; Moore R. A., and McQuay H. J., Opioids in chronic non-cancer pain: systematic review of efficacy and safety. Pain, 2004. 112(3): p. 372-380.
36. Hanna M.; O'Brien C., and Wilson M. C., Prolonged-release oxycodone enhances the effects of existing gabapentin therapy in painful diabetic neuropathy patients. European Journal of Pain (London, England), 2008. 12(6): p. 804-813.
37. Serpella M.G. and Group Neuropathic Pain Study, Gabapentin in neuropathic pain syndromes: a randomised, double-blind, placebo-controlled trial. Pain, 2002. 99(3): p. 557-566.
38. Attal N.; Cruccu G.; Baron R.; Haanpaa M.; Hansson P.; Jensen T. S.; Nurmikko T., and European Federation of Neurological Societies, EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. European Journal of Neurology, 2010. 17(9): p. 1113-e1188.
39. Finnerup Nanna B; Attal Nadine; Haroutounian Simon; McNicol Ewan; Baron Ralf; Dworkin Robert H; Gilron Ian; Haanpää Maija; Hansson Per; Jensen Troels S; Kamerman Peter R; Lund Karen; Moore Andrew; Raja Srinivasa N; Rice Andrew S C; Rowbotham Michael; Sena Emily; Siddall Philip; Smith Blair H, and Wallace Mark, Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurology, 2015. 14: p. 162-173.
40. Haanpaa M. L.; Gourlay G. K.; Kent J. L.; Miaskowski C.; Raja S. N.; Schmader K. E., and Wells C. D., Treatment considerations for patients with neuropathic pain and other medical comorbidities. Mayo Clinic Proceedings, 2010. 85(3 Suppl): p. S15-25.
41. Dayer Pierre; Desmeules Jules, and Collart Laurence, Pharmacology of tramadol. Drugs, 1997. 53(Sup. 2): p. 18-24.
42. Finnerup N. B.; Sindrup S. H., and Jensen T. S., Chronic neuropathic pain: mechanisms, drug targets and measurement. Fundamental and Clinical Pharmacology, 2007. 21(2): p. 129-136.
43. Anand P. and Bley K., Topical capsaicin for pain management: therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. British Journal of Anaesthesia, 2011. 107(4): p. 490-502.
44. Mense S., Neurobiological basis for the use of botulinum toxin in pain therapy. Journal of Neurology, 2004. 251 Suppl 1: p. I1-7.
45. Amir R.; Kocsis J. D., and Devor M., Multiple interacting sites of ectopic spike electrogenesis in primary sensory neurons. Journal of Neuroscience, 2005. 25(10): p. 2576-2585.
46. von Hehn C. A.; Baron R., and Woolf C. J., Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron, 2012. 73(4): p. 638-652.
47. SR Chaplan; HQ Guo; DH Lee; L Luo; C Liu; C Kuei; AA Velumian; MP Butler; SM Brown, and AE Dubin, Neuronal hyperpolarization-activated pacemaker channels drive neuropathic pain. J Neurosci., 2003. 23(4): p. 1169-1178.
48. Kim H. Y.; Park C. K.; Cho I. H.; Jung S. J.; Kim J. S., and Oh S. B., Differential Changes in TRPV1 expression after trigeminal sensory nerve injury. Journal of Pain, 2008. 9(3): p. 280-288.
49. Patapoutian A.; Tate S., and Woolf C. J., Transient receptor potential channels: targeting pain at the source. Nat Rev Drug Discov, 2009. 8(1): p. 55-68.
50. Fernandez-Carvajal A.; Fernandez-Ballester G.; Devesa I.; Gonzalez-Ros J. M., and Ferrer-Montiel A., New strategies to develop novel pain therapies: addressing thermoreceptors from different points of view. Pharmaceuticals (Basel, Switzerland), 2011. 5(1): p. 16-48.
51. Belvisi M. G.; Dubuis E., and Birrell M. A., Transient receptor potential A1 channels: insights into cough and airway inflammatory disease. Chest, 2011. 140(4): p. 1040-1047.
52. Woolf Clifford J, Central sensitization: Implications for the diagnosis and treatment of pain. Pain, 2011. 152(3 Suppl): p. S2–15.
53. Nitzan-Luques A.; Devor M., and Tal M., Genotype-selective phenotypic switch in primary afferent neurons contributes to neuropathic pain. Pain, 2011. 152(10): p. 2413-2426.
54. Kohno T.; Moore K. A.; Baba H., and Woolf C. J., Peripheral nerve injury alters excitatory synaptic transmission in lamina II of the rat dorsal horn. Journal of Physiology, 2003. 548(Pt 1): p. 131-138.
55. Milligan E. D. and Watkins L. R., Pathological and protective roles of glia in chronic pain. Nature Reviews: Neuroscience, 2009. 10(1): p. 23-36.
56. Hald A., Spinal astrogliosis in pain models: cause and effects. Cellular and Molecular Neurobiology, 2009. 29(5): p. 609-619.
57. Streit W. J.; Mrak R. E., and Griffin W. S., Microglia and neuroinflammation: a pathological perspective. Journal of Neuroinflammation, 2004. 1(1): p. 14.
58. Nimmerjahn A.; Kirchhoff F., and Helmchen F., Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 2005. 308(5726): p. 1314-1318.
59. Wu L. J.; Vadakkan K. I., and Zhuo M., ATP-induced chemotaxis of microglial processes requires P2Y receptor-activated initiation of outward potassium currents. Glia, 2007. 55(8): p. 810-821.
60. Gonzalez-Scarano F. and Baltuch Gordon, Microglia as mediators of inflammatory and degenerative diseases. Annual Review of Neuroscience, 1999. 22: p. 219-240.
61. Tsuda M.; Inoue K., and Salter M. W., Neuropathic pain and spinal microglia: a big problem from molecules in "small" glia. Trends in Neurosciences, 2005. 28(2): p. 101-107.
62. Bruce-Keller Annadora J., Microglial–Neuronal Interactions in Synaptic Damage and Recovery. Journal of Neuroscience Research, 1999. 58: p. 191-201.
63. Zhang F.; Vadakkan K. I.; Kim S. S.; Wu L. J.; Shang Y., and Zhuo M., Selective activation of microglia in spinal cord but not higher cortical regions following nerve injury in adult mouse. Molecular Pain, 2008. 4: p. 15.
64. Inoue K. and Tsuda M., Microglia and neuropathic pain. Glia, 2009. 57(14): p. 1469-1479.
65. Ji R. R. and Suter M. R., p38 MAPK, microglial signaling, and neuropathic pain. Molecular Pain, 2007. 3: p. 33.
66. Gosselin R. D.; Suter M. R.; Ji R. R., and Decosterd I., Glial cells and chronic pain. Neuroscientist, 2010. 16(5): p. 519-531.
67. Benarroch E. E., Central neuron-glia interactions and neuropathic pain: overview of recent concepts and clinical implications. Neurology, 2010. 75(3): p. 273-278.
68. Clark A. K.; Yip P. K., and Malcangio M., The liberation of fractalkine in the dorsal horn requires microglial cathepsin S. Journal of Neuroscience, 2009. 29(21): p. 6945-6954.
69. Zhuang Zhi-Ye; Kawasaki Yasuhiko; Tan Ping-Heng; Wen Yeong-Ray; Huang Jing, and Ji RuRong, Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine. Brain Behav Immun., 2007. 21(5): p. 642-651.
70. Clark Anna K.; Yip Ping K.; Gris John; Gentry Clive; Staniland Amelia A.; Marchand Fabien; Dehvari Maliheh; Wotherspoon Glen; Winter Janet; Ullah Jakir; Bevan Stuart, and Malcangio Marzia, Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. PNAS, 2007. 104(25): p. 10655-10660.
71. Zhang J. and De Koninck Y., Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury. Journal of Neurochemistry, 2006. 97(3): p. 772-783.
72. Abbadie Catherine; Lindia Jill A.; Cumiskey Anne Marie; Peterson Larry B.; Mudgett John S.; Bayne Ellen K.; DeMartino Julie A.; MacIntyre D. Euan, and Forrest Michael J., Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. PNAS, 2003. 100(3): p. 7947-7952.
73. Thacker M. A.; Clark A. K.; Bishop T.; Grist J.; Yip P. K.; Moon L. D.; Thompson S. W.; Marchand F., and McMahon S. B., CCL2 is a key mediator of microglia activation in neuropathic pain states. European Journal of Pain (London, England), 2009. 13(3): p. 263-272.
74. Chen T.; Koga K.; Li X. Y., and Zhuo M., Spinal microglial motility is independent of neuronal activity and plasticity in adult mice. Molecular Pain, 2010. 6: p. 19.
75. James Greg and Butt Arthur M., P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. European Journal of Pharmacology, 2002. 447(2-3): p. 247-260.
76. Trang T.; Beggs S.; Wan X., and Salter M. W., P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. Journal of Neuroscience, 2009. 29(11): p. 3518-3528.
77. Clark A. K.; Staniland A. A.; Marchand F.; Kaan T. K.; McMahon S. B., and Malcangio M., P2X7-dependent release of interleukin-1beta and nociception in the spinal cord following lipopolysaccharide. Journal of Neuroscience, 2010. 30(2): p. 573-582.
78. Shiratori M.; Tozaki-Saitoh H.; Yoshitake M.; Tsuda M., and Inoue K., P2X7 receptor activation induces CXCL2 production in microglia through NFAT and PKC/MAPK pathways. Journal of Neurochemistry, 2010. 114(3): p. 810-819.
79. Koizumi S.; Shigemoto-Mogami Y.; Nasu-Tada K.; Shinozaki Y.; Ohsawa K.; Tsuda M.; Joshi B. V.; Jacobson K. A.; Kohsaka S., and Inoue K., UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature, 2007. 446(7139): p. 1091-1095.
80. Tozaki-Saitoh H.; Tsuda M.; Miyata H.; Ueda K.; Kohsaka S., and Inoue K., P2Y12 receptors in spinal microglia are required for neuropathic pain after peripheral nerve injury. Journal of Neuroscience, 2008. 28(19): p. 4949-4956.
81. Tsacopoulosl Marco and Magistretti Pierre J., Metabolic Coupling between Glia and Neurons. The Journal of Neuroscience, 1996. 16(3): p. 877-885.
82. Magistretti Pierre J.; Bittar P; Pellegri G; Martin JL, and Pellerin L, Activity-dependent astrocyte-neuron lactate shuttle. Journal of Neurochemistry, 1997. 69: p. S263-S263.
83. Kasischke Karl A.; D Harshad; Vishwasrao; Fisher Patricia J.; Zipfel Warren R., and Webb Watt W., Neural Activity Triggers Neuronal Oxidative Metabolism Followed by Astrocytic Glycolysis. Science, 2004. 305(5680): p. 99-103.
84. Chih Ching-Ping; Lipton Peter, and Eugene L. Roberts Jr, Do active cerebral neurons really use lactate rather than glucose? Trends in Neurosciences, 2001. 24(10): p. 573-578.
85. Saheki Shuichi; Saheki Kikuko, and Tanaka Takehiko, Peptide structures of pyruvate kinase isozymes: 1. Comparison of the four pyruvate kinase isozymes of the rat. Biochimica Biophysica Acta, 1982. 704: p. 484-493.
86. Noguchi Tamio; Inoue Hiroyasu, and Tanaka Takehiko, The MI- and M2-type Isozymes of Rat Pyruvate Kinase Are Produced from the Same Gene by Alternative RNA Splicing. The Journal of Biological Chemistry, 1986. 261(29): p. 13807-13812.
87. MUIRHEAD HILARY, Isoenzymes of pyruvate kinase. Biochemical Society Transactions, 1990. 18(2): p. 193-196.
88. E Eigenbrodt; M Reinacher; U Scheefers-Borchel; H Scheefers, and R. Friis, Double role of pyruvate kinase type M2 in the regulation of phosphometabolite pools. Cell Growth and Oncogenesis, 1992. 3(1-2): p. 91-115.
89. Locasale J. W.; Grassian A. R.; Melman T.; Lyssiotis C. A.; Mattaini K. R.; Bass A. J.; Heffron G.; Metallo C. M.; Muranen T.; Sharfi H.; Sasaki A. T.; Anastasiou D.; Mullarky E.; Vokes N. I.; Sasaki M.; Beroukhim R.; Stephanopoulos G.; Ligon A. H.; Meyerson M.; Richardson A. L.; Chin L.; Wagner G.; Asara J. M.; Brugge J. S.; Cantley L. C., and Vander Heiden M. G., Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genetics, 2011. 43(9): p. 869-874.
90. Alves-Filho J. C. and Palsson-McDermott E. M., Pyruvate Kinase M2: A Potential Target for Regulating Inflammation. Frontiers in Immunology, 2016. 7: p. 145.
91. Chou A. K.; Yang M. C.; Tsai H. P.; Chai C. Y.; Tai M. H.; Kwan A. L., and Hong Y. R., Adenoviral-mediated glial cell line-derived neurotrophic factor gene transfer has a protective effect on sciatic nerve following constriction-induced spinal cord injury. PloS One, 2014. 9(3): p. e92264.
92. Han Guang; Li Lu, and Meng Ling-xin, Effects of hyperbaric oxygen on pain-related behaviours and nitric oxide synthase expression in a rat model of neuropathic pain. Pain Res manag, 2013. 181(3): p. 137-141.
93. Poyton Robert and Hendrickson Marina, Crosstalk between nitric oxide and hypoxia-inducible factor signaling pathways: an update. Research and Reports in Biochemistry, 2015: p. 147.
94. Ciavardelli D.; Bellomo M.; Crescimanno C., and Vella V., Type 3 deiodinase: role in cancer growth, stemness, and metabolism. Frontiers in Endocrinology, 2014. 5: p. 215.
95. Ohno Hideki; Shirato Ken; Sakurai Takuya; Ogasawara Junetsu; Sumitani Yoshikazu; Sato Shogo; Imaizumi Kazuhiko; Ishida Hitoshi, and Kizaki Takako, Effect of exercise on HIF-1 and VEGF signaling. J Phys Fitness Sports Med, 2012. 1(1): p. 5-16.
96. Neeb L.; Hellen P.; Boehnke C.; Hoffmann J.; Schuh-Hofer S.; Dirnagl U., and Reuter U., IL-1beta stimulates COX-2 dependent PGE(2) synthesis and CGRP release in rat trigeminal ganglia cells. PloS One, 2011. 6(3): p. e17360.
97. Hardeland R.; Pandi-Perumal S. R., and Cardinali D. P., Melatonin. International Journal of Biochemistry and Cell Biology, 2006. 38(3): p. 313-316.
98. Tan Dun-Xian; Manchester Lucien C.; Terron M. Pilar; Flores Luis J.; Tamura Hiroshi, and Reiter Russel J., Melatonin as a naturally occurring co-substrate of quinone reductase-2, the putative MT3 melatonin membrane receptor: hypothesis and significance. Journal of Pineal Research, 2007. 43(4): p. 317-320.
99. Repper Stwmn M.; Wtwer David R., and Godson Catlwrine, Melatonin receptors step into the lighk cloning and classification of subtypes. Trends in Pharmacological Sciences, 1996. 17(3): p. 100-102.
100. Rodriguez Carmen; Mayo Juan C.; Sainz Rosa M.; Antolín Isaac; Herrera Federico; Martín Vanesa, and Reiter Russel J., Regulation of antioxidant enzymes: a significant role for melatonin. Journal of Pineal Research, 2003. 36(1): p. 1-9.
101. Lopez-Canul M.; Palazzo E.; Dominguez-Lopez S.; Luongo L.; Lacoste B.; Comai S.; Angeloni D.; Fraschini F.; Boccella S.; Spadoni G.; Bedini A.; Tarzia G.; Maione S.; Granados-Soto V., and Gobbi G., Selective melatonin MT2 receptor ligands relieve neuropathic pain through modulation of brainstem descending antinociceptive pathways. Pain, 2015. 156(2): p. 305-317.
102. Danilov A. and Kurganova J., Melatonin in Chronic Pain Syndromes. Pain Ther, 2016. 5(1): p. 1-17.
103. Chenaf C.; Chapuy E.; Libert F.; Marchand F.; Courteix C.; Bertrand M.; Gabriel C.; Mocaer E.; Eschalier A., and Authier N., Agomelatine: a new opportunity to reduce neuropathic pain-preclinical evidence. Pain, 2017. 158(1): p. 149-160.
104. Chen Chunqiu; Fichna Jakub; Laudon Moshe, and Storr Martin, Antinociceptive effects of novel melatonin receptor agonists in mouse models of abdominal pain. World Journal of Gastroenterology : WJG, 2014. 20(5): p. 1298-1304.
105. Lopez-Canul M.; Comai S.; Dominguez-Lopez S.; Granados-Soto V., and Gobbi G., Antinociceptive properties of selective MT(2) melatonin receptor partial agonists. European Journal of Pharmacology, 2015. 764: p. 424-432.
106. Colleoni M. and Sacerdote P., Murine models of human neuropathic pain. Biochimica et Biophysica Acta, 2010. 1802(10): p. 924-933.
107. Costa B.; Trovato A. E.; Colleoni M.; Giagnoni G.; Zarini E., and Croci T., Effect of the cannabinoid CB1 receptor antagonist, SR141716, on nociceptive response and nerve demyelination in rodents with chronic constriction injury of the sciatic nerve. Pain, 2005. 116(1-2): p. 52-61.
108. Bennett Gary J. and Xie Y.-K., A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain, 1988. 33: p. 87-107.
109. Lindenlaub Thies; Teuteberg Philipp; Hartung Thomas, and Sommer Claudia, Effects of neutralizing antibodies to TNF-alpha on pain-related behavior and nerve regeneration in mice with chronic constriction injury. Brain Research, 2000. 866(1-2): p. 15-22.
110. Valsecchi A. E.; Franchi S.; Panerai A. E.; Sacerdote P.; Trovato A. E., and Colleoni M., Genistein, a natural phytoestrogen from soy, relieves neuropathic pain following chronic constriction sciatic nerve injury in mice: anti-inflammatory and antioxidant activity. Journal of Neurochemistry, 2008. 107(1): p. 230-240.
111. Costigan M.; Scholz J., and Woolf C. J., Neuropathic pain: a maladaptive response of the nervous system to damage. Annual Review of Neuroscience, 2009. 32: p. 1-32.
112. Hu Y.; Chen J.; Hu G.; Yu J.; Zhu X.; Lin Y.; Chen S., and Yuan J., Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Marine Drugs, 2015. 13(1): p. 202-221.
113. Blunt J. W.; Copp B. R.; Keyzers R. A.; Munro M. H. G., and Prinsep M. R., Marine natural products. Natural Product Reports, 2017. 34(3): p. 235-294.
114. Blunt J. W.; Carroll A. R.; Copp B. R.; Davis R. A.; Keyzers R. A., and Prinsep M. R., Marine natural products. Natural Product Reports, 2018. 35(1): p. 8-53.
115. Mayer A. M.; Glaser K. B.; Cuevas C.; Jacobs R. S.; Kem W.; Little R. D.; McIntosh J. M.; Newman D. J.; Potts B. C., and Shuster D. E., The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends in Pharmacological Sciences, 2010. 31(6): p. 255-265.
116. Mayer Alejandro M; Nguyen Michelle; Kalwajtys Patrycja; Kerns Hillary; Newman David J, and Glaser Keith B, The Marine Pharmacology and Pharmaceuticals Pipeline in 2016. FASEB Journal, 2017. 31(1): p. Sup 818.811.
117. Skov M. J.; Beck J. C.; de Kater A. W., and Shopp G. M., Nonclinical safety of ziconotide: an intrathecal analgesic of a new pharmaceutical class. International Journal of Toxicology, 2007. 26(5): p. 411-421.
118. JG McGivern, Ziconotide: a review of its pharmacology and use in the treatment of pain. Neuropsychiatr Dis Treat., 2007. 3(1): p. 69-85.
119. Anand P.; O'Neil A.; Lin E.; Douglas T., and Holford M., Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers. Scientific Reports, 2015. 5: p. 12497.
120. Maier C.; Gockel H. H.; Gruhn K.; Krumova E. K., and Edel M. A., Increased risk of suicide under intrathecal ziconotide treatment? - a warning. Pain, 2011. 152(1): p. 235-237.
121. Chau R.; Kalaitzis J. A., and Neilan B. A., On the origins and biosynthesis of tetrodotoxin. Aquatic Toxicology, 2011. 104(1-2): p. 61-72.
122. Lago J.; Rodriguez L. P.; Blanco L.; Vieites J. M., and Cabado A. G., Tetrodotoxin, an Extremely Potent Marine Neurotoxin: Distribution, Toxicity, Origin and Therapeutical Uses. Marine Drugs, 2015. 13(10): p. 6384-6406.
123. T Narahashi, Tetrodotoxin —A brief history—. Proc Jpn Acad Ser B Phys Biol Sci., 2008. 84(5): p. 147-154.
124. HS1 Xiao; QH Huang; FX Zhang; L Bao; YJ Lu; C Guo; L Yang; WJ Huang; G Fu; SH Xu; XP Cheng; Q Yan; ZD Zhu; X Zhang; Z Chen; ZG Han, and X. Zhang, Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci U S A., 2002. 99(12): p. 8360-8365.
125. Zhao P.; Waxman S. G., and Hains B. C., Sodium channel expression in the ventral posterolateral nucleus of the thalamus after peripheral nerve injury. Molecular Pain, 2006. 2: p. 27.
126. Ohno K.; Yokota A.; Hirofuji S.; Kanbara K.; Ohtsuka H., and Kinoshita M., Altered expression of sodium channel distribution in the dorsal root ganglion after gradual elongation of rat sciatic nerves. Journal of Orthopaedic Research, 2010. 28(4): p. 481-486.
127. YS Lyu; SK Park; K Chung, and JM. Chung, Low dose of tetrodotoxin reduces neuropathic pain behaviors in an animal model. Brain Research, 2000. 871(1): p. 98-103.
128. Marcil J.; Walczak J. S.; Guindon J.; Ngoc A. H.; Lu S., and Beaulieu P., Antinociceptive effects of tetrodotoxin (TTX) in rodents. British Journal of Anaesthesia, 2006. 96(6): p. 761-768.
129. Chen S. C.; Chien Y. C.; Pan C. H.; Sheu J. H.; Chen C. Y., and Wu C. H., Inhibitory effect of dihydroaustrasulfone alcohol on the migration of human non-small cell lung carcinoma A549 cells and the antitumor effect on a Lewis lung carcinoma-bearing tumor model in C57BL/6J mice. Marine Drugs, 2014. 12(1): p. 196-213.
130. Wen Z. H.; Chao C. H.; Wu M. H., and Sheu J. H., A neuroprotective sulfone of marine origin and the in vivo anti-inflammatory activity of an analogue. European Journal of Medicinal Chemistry, 2010. 45(12): p. 5998-6004.
131. TL Yaksh and TA Rudy, Chronic catheterization of the spinal subarachnoid space. Physiology & behavior, 1976. 17(6): p. 1031-1036.
132. Chaplan S.R.; a F.W. Bach; Pogrel J.W.; Chung J.M., and Yaksh T.L., Quantitative assessment of tactile allodynia in the rat paw Journal of Neuroscience Methods, 1994. 53: p. 55-63.
133. Hargreaves K.; Dubner R.; Brown F.; Flores C., and Joris J., A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain, 1988. 32(1): p. 77-88.
134. Fernihough J.; Gentry C.; Malcangio M.; Fox A.; Rediske J.; Pellas T.; Kidd B.; Bevan S., and Winter J., Pain related behaviour in two models of osteoarthritis in the rat knee. Pain, 2004. 112(1-2): p. 83-93.
135. Huang S. Y.; Chen N. F.; Chen W. F.; Hung H. C.; Lee H. P.; Lin Y. Y.; Wang H. M.; Sung P. J.; Sheu J. H., and Wen Z. H., Sinularin from indigenous soft coral attenuates nociceptive responses and spinal neuroinflammation in carrageenan-induced inflammatory rat model. Marine Drugs, 2012. 10(9): p. 1899-1919.
136. PA Janssen; CJ Niemegeers, and JG Dony, The inhibitory effect of fentanyl and other morphine-like analgesics on the warm water induced tail withdrawl reflex in rats. Arzneimittelforschung., 1963. 13: p. 502-507.
137. Starowicz K.; Makuch W.; Osikowicz M.; Piscitelli F.; Petrosino S.; Di Marzo V., and Przewlocka B., Spinal anandamide produces analgesia in neuropathic rats: possible CB(1)- and TRPV1-mediated mechanisms. Neuropharmacology, 2012. 62(4): p. 1746-1755.
138. Zhang Ling-Hua; Langley Ross E., and Koehn Frank E., Antiproliferative and immunosuppressive properties of microcolin A, a marine-derived lipopeptide. Life Sciences, 1997. 60(10): p. 751-762.
139. Fu E. S.; Zhang Y. P.; Sagen J.; Candiotti K. A.; Morton P. D.; Liebl D. J.; Bethea J. R., and Brambilla R., Transgenic inhibition of glial NF-kappa B reduces pain behavior and inflammation after peripheral nerve injury. Pain, 2010. 148(3): p. 509-518.
140. Sung C. S.; Cherng C. H.; Wen Z. H.; Chang W. K.; Huang S. Y.; Lin S. L.; Chan K. H., and Wong C. S., Minocycline and fluorocitrate suppress spinal nociceptive signaling in intrathecal IL-1beta-induced thermal hyperalgesic rats. Glia, 2012. 60(12): p. 2004-2017.
141. Chang C. Y.; Challa C. K.; Shah J., and Eloy J. D., Gabapentin in acute postoperative pain management. Biomed Res Int, 2014. 2014: p. 631756.
142. Suto T.; Severino A. L.; Eisenach J. C., and Hayashida K., Gabapentin increases extracellular glutamatergic level in the locus coeruleus via astroglial glutamate transporter-dependent mechanisms. Neuropharmacology, 2014. 81: p. 95-100.
143. Bao Y. H.; Zhou Q. H.; Chen R.; Xu H.; Zeng L. L.; Zhang X.; Jiang W., and Du D. P., Gabapentin enhances the morphine anti-nociceptive effect in neuropathic pain via the interleukin-10-heme oxygenase-1 signalling pathway in rats. Journal of Molecular Neuroscience, 2014. 54(1): p. 137-146.
144. Chen W. F.; Huang S. Y.; Liao C. Y.; Sung C. S.; Chen J. Y., and Wen Z. H., The use of the antimicrobial peptide piscidin (PCD)-1 as a novel anti-nociceptive agent. Biomaterials, 2015. 53: p. 1-11.
145. Gao Yonghui; Chen Shuping; Xu Qiuling; Yu Kan; Wang Junying; Qiao Lina; Meng Fanying, and Liu Junling, Proteomic Analysis of Differential Proteins Related to Anti-nociceptive Effect of Electroacupuncture in the Hypothalamus Following Neuropathic Pain in Rats. Neurochem Res., 2013. 38: p. 1467-1478.
146. Wang B.; Liu S.; Fan B.; Xu X.; Chen Y.; Lu R.; Xu Z., and Liu X., PKM2 is involved in neuropathic pain by regulating ERK and STAT3 activation in rat spinal cord. Journal of Headache and Pain, 2018. 19(1): p. 7.
147. Zheng J., Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncology Letters, 2012. 4(6): p. 1151-1157.
148. Andrejeva G. and Rathmell J. C., Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tumors. Cell Metabolism, 2017. 26(1): p. 49-70.
149. Rahmati Maryam; Mobasheri Ali, and Mozafari Masoud, Inflammatory mediators in osteoarthritis: A critical review of the state-of-the-art, current prospects, and future challenges. Bone, 2016. 85: p. 81-90.
150. Moalem G. and Tracey D. J., Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev, 2006. 51(2): p. 240-264.
151. Lim T. K.; Shi X. Q.; Johnson J. M.; Rone M. B.; Antel J. P.; David S., and Zhang J., Peripheral nerve injury induces persistent vascular dysfunction and endoneurial hypoxia, contributing to the genesis of neuropathic pain. Journal of Neuroscience, 2015. 35(8): p. 3346-3359.
152. Chu L. W.; Chen J. Y.; Yu K. L.; Cheng K. I.; Chen I. J.; Wu P. C., and Wu B. N., Neuroprotective and Anti-Inflammatory Activities of Atorvastatin in a Rat Chronic Constriction Injury Model. International Journal of Immunopathology and Pharmacology, 2012. 25(1): p. 219-230.
153. Carroll V. A. and Ashcroft M., Targeting the molecular basis for tumour hypoxia. Expert Reviews in Molecular Medicine, 2005. 7(6): p. 1-16.
154. Clapp C.; Thebault S.; Jeziorski M. C., and Martinez De La Escalera G., Peptide hormone regulation of angiogenesis. Physiological Reviews, 2009. 89(4): p. 1177-1215.
155. Saharinen P. and Alitalo K., The yin, the yang, and the angiopoietin-1. Journal of Clinical Investigation, 2011. 121(6): p. 2157-2159.
156. Burger Jan A., Angiopoietin-2 in CLL. Blood, 2010. 116(4): p. 508.
157. Zakrzewicz A.; Secomb T. W., and Pries A. R., Angioadaptation: Keeping the Vascular System in Shape. Physiology, 2002. 17(5): p. 197-201.
158. Tosini Gianluca; Owino Sharon; Guillame Jean-Luc, and Jockers Ralf, Melatonin receptors: latest insights from mouse models. BioEssays : news and reviews in molecular, cellular and developmental biology, 2014. 36(8): p. 778-787.
159. Maharaj D. S.; Glass B. D., and Daya S., Melatonin: new places in therapy. Bioscience Reports, 2007. 27(6): p. 299-320.
160. Ambriz-Tututi M.; Rocha-Gonzalez H. I.; Cruz S. L., and Granados-Soto V., Melatonin: a hormone that modulates pain. Life Sciences, 2009. 84(15-16): p. 489-498.
161. Browning Christopher; Beresford Isabel; Fraser Neil, and Giles Heather, Pharmacological characterization of human recombinant melatonin mt1 and MT2 receptors. British Journal of Pharmacology, 2000. 129(5): p. 877-886.
162. Soto-Vega Elena; Meza Isaura; Ramı´rez-Rodrı´guez Gerardo, and Benitez-King1 Gloria, Melatonin stimulates calmodulin phosphorylation by protein kinase C. Journal of Pineal Research, 2004. 37: p. 98-106.
163. Fang Li; Wu Jing; Lin Qing, and Willis William D., Calcium–Calmodulin-Dependent Protein Kinase II Contributes to Spinal Cord Central Sensitization. The Journal of Neuroscience, 2002. 22(10): p. 4196.
164. Haq R.; Fisher D. E., and Widlund H. R., Molecular pathways: BRAF induces bioenergetic adaptation by attenuating oxidative phosphorylation. Clinical Cancer Research, 2014. 20(9): p. 2257-2263.
165. Nishio T.; Usami M.; Awaji M.; Shinohara S., and Sato K., Dual effects of acetylsalicylic acid on ERK signaling and Mitf transcription lead to inhibition of melanogenesis. Molecular and Cellular Biochemistry, 2016. 412(1-2): p. 101-110.
166. De Filippis D.; Russo A.; De Stefano D.; Cipriano M.; Esposito D.; Grassia G.; Carnuccio R.; Russo G., and Iuvone T., Palmitoylethanolamide inhibits rMCP-5 expression by regulating MITF activation in rat chronic granulomatous inflammation. European Journal of Pharmacology, 2014. 725: p. 64-69.
167. Ambriz-Tututi M. and Granados-Soto V., Oral and spinal melatonin reduces tactile allodynia in rats via activation of MT2 and opioid receptors. Pain, 2007. 132(3): p. 273-280.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.138.124.167
論文開放下載的時間是 校外不公開

Your IP address is 3.138.124.167
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code