論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2027-12-23
校外 Off-campus:開放下載的時間 available 2027-12-23
論文名稱 Title |
自我注入鎖定脈衝都卜勒雷達系統 Self-Injection Locked Pulsed Doppler Radar System |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
94 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2024-12-13 |
繳交日期 Date of Submission |
2024-12-23 |
關鍵字 Keywords |
反正切解調、直流位移校正、生理徵象感測、自我注入鎖定雷達、脈衝雷達、距離解析度 arctangent demodulation, DC offset correction, physiological signal sensing, self-injection-locked radar, pulse radar, range resolution |
||
統計 Statistics |
本論文已被瀏覽 64 次,被下載 0 次 The thesis/dissertation has been browsed 64 times, has been downloaded 0 times. |
中文摘要 |
本論文提出一種創新的雷達系統架構,結合脈衝雷達與自我注入鎖定雷達實現生理徵象感測。首先,雷達的發射機具備切換0度和90度相位的相移器,以避免感測無效點。發射訊號為脈衝寬度5 ns,脈衝重複間隔為1 ms,當天線接收的脈衝訊號經過混頻器降頻後由注入端回到振盪器,將會使SILO的輸出頻率在自由振盪與自我注入鎖定之間切換。接著利用正交解調器及延遲單元對SILO的輸出訊號進行解調,並且在訊號處理時使用直流位移校正以及反正切解調方法,得出受測者的距離資訊以及生理訊號。在距離解析度方面,傳統的非調頻脈衝雷達受限於脈衝寬度,而本文提出的系統則無此限制。 在實驗中的感測對象為金屬板與人體,致動器以正弦波方式控制金屬板,使其以1 Hz的頻率擺動,擺幅為5 mm。受測者配戴呼吸帶以及指尖血氧儀以提供參考,受測目標皆距離天線1 m。雷達感測到金屬板以擺幅5 mm且頻率1 Hz的正弦擺動,量測人體的心律與呼吸頻率分別為76 bpm和0.2 Hz,其與參考結果幾乎相同。 在距離解析度的測試上,受測目標之間的距離小於脈衝寬度,考量接收信號的訊號雜訊比因素,使金屬板與人體的實驗設置有所不同。兩個金屬板距離天線分別為1.5 m與1.8 m,第一位受測者的胸腔位置距離天線1 m,第二位受測者則為1.45 m。依據感測結果,兩個金屬板之間的距離差距為0.315 m,兩位受測者之間的距離差距為0.375 m,雖然與實驗設置有些偏差,但依然在誤差範圍內。 |
Abstract |
This paper presents an innovative radar system architecture that combines pulse radar and self-injection-locked radar for physiological signal sensing. The radar transmitter features a phase shifter capable of switching between 0° and 90° phases to avoid null detection points. The transmitted signal consists of 5 ns pulses with a 1 ms pulse repetition interval. Pulses received by the antenna are downconverted through a mixer and injected back into the oscillator, causing the SILO output frequency to alternate between free-running and self-injection locking modes. The output signal from the SILO is then demodulated using a quadrature demodulator and delay unit. Signal processing techniques, including DC offset correction and arctangent demodulation, are employed to extract the distance information and physiological signals of the subject. Unlike traditional non-frequency-modulated impulse radars, which are constrained by pulse width in range resolution, the proposed system overcomes this limitation. In experiments, the sensing targets include a metal plate and a human subject. The metal plate is driven by an actuator in a sinusoidal motion with a frequency of 1 Hz and an amplitude of 5 mm. The subjects wear a respiratory belt and a fingertip pulse oximeter for reference. All targets are positioned 1 m from the antenna. The radar accurately detects the metal plate’s sinusoidal motion with a 5 mm amplitude and 1 Hz frequency. It also measures the human subject's heart rate and respiratory rate as 76 bpm and 0.2 Hz, respectively, which closely match the reference values. For range resolution testing, the target distances are set closer than the radar's pulse width. Due to considerations of signal-to-noise ratio (SNR), different experimental setups are used for the metal plates and human subjects. Two metal plates are positioned 1.5 m and 1.8 m from the antenna, while the chest positions of the first and second human subjects are 1 m and 1.45 m away, respectively. The sensing results indicate a distance difference of 0.315 m between the two metal plates and 0.375 m between the two human subjects. Although these values show slight deviations from the experimental setup, they remain within the acceptable error range. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 vi 圖次 viii 表次 xii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 雷達介紹 2 1.2.1連續波雷達 2 1.2.2調頻連續波雷達 4 1.2.3脈衝雷達 6 1.3 章節規劃 9 第二章 系統架構與原理 10 2.1 自我注入鎖定脈衝都卜勒雷達 10 2.2 理論分析 12 2.3 距離解析度分析 24 第三章 系統整合與驗證 41 3.1 系統硬體與實驗儀器 41 3.2 Segment Sampling Mode 47 3.3 閉迴路系統實驗 49 3.3.1 距離與都卜勒量測 51 3.3.2 距離解析度量測 56 3.3.3 雙路徑都卜勒量測 59 第四章 感測實驗 64 4.1 系統硬體與儀器設定 64 4.2 金屬板偵測實驗 64 4.2.1 距離與擺幅量測 65 4.2.2 距離解析度量測 68 4.3 人體感測實驗 70 4.3.1 距離與生理訊號量測 70 4.3.2 距離解析度量測 74 第五章 結論 77 參考文獻 79 |
參考文獻 References |
[1] Z. Qu, P. Jiang, and W. Zhang, “Development and Application of Infrared Thermography Non-Destructive Testing Techniques,” Sensors, vol. 20, no. 14, p. 3851, Jan. 2020. [2] V. Ramanathan and Y. Feng, “Air pollution, greenhouse gases and climate change: Global and regional perspectives,” Atmospheric Environment, vol. 43, no. 1, pp. 37–50, Jan. 2009. [3] K. M. Chen, Y. Huang, J. Zhang, and A. Norman, “Microwave life- detection systems for searching human subjects under earthquake rubble and behind barrier,” IEEE Trans. Biomed. Eng., vol. 47, no. 1, pp. 105– 114, Jan. 2000. [4] A. D. Droitcour, O. Boric-Lubecke, G. T. A. Kovacs, "Signal-to- noise ratio in Doppler radar systems for heart and respiratory rate measurements", IEEE Trans. Microw. Theory Techn., vol. 57, pp. 2498-2507, Oct. 2009. [5] W. D. Boyer, “A diplex, Doppler phase comparison radar,” IEEE Trans. Aerosp. Navig. Electron., vol. ANE-10, no. 1, pp. 27-33, March 1963. [6] M. Zakrzewski, A. Vehkaoja, A. S. Joutsen, K. T. Palovuori and J. J. Vanhala, “Noncontact Respiration Monitoring During Sleep With Microwave Doppler Radar, ” IEEE Sensors J., vol. 15, no. 10, pp. 5683-5693, Oct. 2015. [7] F. Wang, T. Horng, K. Peng, J. Jau, J. Li, and C. Chen, “Single-Antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3577–3587, Dec. 2011. [8] F.-K. Wang et al., “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112–4120, Dec. 2010. [9] M. Mercuri, Y.-H. Liu, I. Lorato, T. Torfs, A. Bourdoux, and C. van Hoof, “Frequency-tracking CW Doppler radar solving smallangle approximation and null point issues in non-contact vital signs monitoring,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 3, pp. 671–680, Jun. 2017. [10] F.-K. Wang, J.-X. Zhong, and J.-Y. Shih, “IQ signal demodulation for noncontact vital sign monitoring using a CW Doppler radar: A review,” IEEE J. Electromagn., RF Microw. Med. Biol., vol. 6, no. 4, pp. 449–460, Dec. 2022. [11] F.-K. Wang, P.-H. Juan, S.-C. Su, M.-C. Tang, and T.-S. Horng, “Monitoring Displacement by a Quadrature Self-Injection-Locked Radar With Measurement- and Differential-Based Offset Calibration Methods,” IEEE Sensors Journal, vol. 19, no. 5, pp. 1905–1916, Dec. 2018. [12] F.-K. Wang et al., “Detection of concealed individuals based on their vital signs by using a see-through-wall imaging system with a self-injection-locked radar,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 696–704, Jan. 2013. [13] M. Ponton and A. Suarez, “Wireless injection locking of oscillator circuits,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4646–4659, Dec. 2016. [14] W.-C. Su et al., “Stepped-frequency continuous-wave radar with self-injection-locked technology for monitoring multiple human vital signs,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 12, pp. 5396–5405, Dec. 2019. [15] Y.-T. Lo, J.-W. Wu, C.-H. Huang, and T.-J. Chang, "Human Silhouette Imaging by Ultra-wideband Impulse Echo," 2022 Asia-Pacific Microwave Conference (APMC), Yokohama, Japan, 2022, pp. 560-562. [16] G. E. Smith, F. Ahmad, and M. G. Amin, “Micro-Doppler processing for ultra-wideband radar data,” Proc. SPIE 8361, Radar Sensor Technology XVI, 83610L, May 2012. [17] Y. Wang, Quanhua Liu and A. E. Fathy, "Simultaneous localization and respiration detection of multiple people using low cost UWB biometric pulse Doppler radar sensor," 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 2012, pp. 1-3. [18] Keysight [Online] Available: https://www.keysight.com/us/en/product/N9030B/pxa-signal-analyzer-multi-touch-2-hz-50-ghz.html [19] Keysight [Online] Available: https://www.keysight.com/us/en/product/DSA91304A/infiniium-high-performance-oscilloscope-13ghz.html [20] Keysight [Online] Available: https://www.keysight.com/us/en/product/81150A/81150a-pulse-function-arbitrary-noise-generator.html [21] Keysight [Online] Available: https://www.keysight.com/us/en/product/M8195A/65-gsa-s-arbitrary-waveform-generator.html [22] Keysight [Online] Available: https://www.keysight.com/us/en/product/N5183B/mxg-x-series-microwave-analog-signal-generator-9-khz-40-ghz.html |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2027-12-23 校外 Off-campus:開放下載的時間 available 2027-12-23 您的 IP(校外) 位址是 3.133.123.185 現在時間是 2025-04-03 論文校外開放下載的時間是 2027-12-23 Your IP address is 3.133.123.185 The current date is 2025-04-03 This thesis will be available to you on 2027-12-23. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |