博碩士論文 etd-1130114-153159 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 彭泓文(Hung-Wen Peng) 電子郵件信箱 E-mail 資料不公開
畢業系所 電機工程學系研究所(Electrical Engineering)
畢業學位 碩士(Master) 畢業時期 103學年第1學期
論文名稱(中) 結合混合式學習的自構式旋轉相似度演算法用於分類與回歸問題
論文名稱(英) A Self-Constructing Rotating Similarity with Hybrid Learning Method for Classification and Regression Problems
檔案
  • etd-1130114-153159.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    紙本論文:5 年後公開 (2019-12-30 公開)

    電子論文:使用者自訂權限:校內 5 年後、校外 5 年後公開

    論文語文/頁數 中文/64
    統計 本論文已被瀏覽 5628 次,被下載 52 次
    摘要(中) 針對單標籤分類、多標籤分類與回歸預測的問題,我們提出了一個演算法來解決這些問題,這個演算法主要可以分成四個步驟,分別是旋轉相似度計算、加權關聯性計算、混合式學習與門檻值檢測。
    一開始,我們將訓練樣本輸入演算法中進行旋轉群相似度計算,它會將每筆訓練樣本都轉換成一表示各旋轉群的相似度的向量,而旋轉群是一種更妥善描述資料分佈的方法,尤其是當資料分佈的形狀越接近超球體、超橢圓體或是斜角超橢圓體。我們會將轉換過後的相似度進行加權合併整合,以得到此樣本與每種類別標籤或是輸出目標值的關聯性;之後,運用混合式學習演算法來修正演算法中的參數,以提升系統的效能,讓預測的結果更加的準確;我們會依照不同的問題類型而設定不同的門檻值函數,最後透過門檻值檢測取得演算法的預測輸出結果。
    使用者並不需要預先設定旋轉群的數量,而是在訓練階段時,每個群將會自動建立與形成。最後我們透過一些實驗可以得知我們的方法的效能。
    摘要(英) We propose an algorithm for single label classification, multi-label classification, and regression estimation which incorporates a rotating similarity, weighted relevance, hybrid learning, and threshold checking.
    Firstly, the rotating cluster similarity is more suitable of the distribution of the data set with hyper-spherical, hyper-ellipsoidal, or oblique hyper-ellipsoidal shapes and it is used to transform each input instance into a rotating cluster similarity. Then, the similarity of the input instance will be combined to obtain the weighted relevance of the input instance to each particular category or output value. Next, we use the hybrid learning method to refine the parameters which is in this algorithm to get better performance. Finally, the threshold checking is used to obtain the output. We will set different kind of threshold functions to determine the output due to the kind of problems.
    The number of rotating clusters do not need to be specified in advance. Each cluster will self-construct during the training phase. A number of experimental results are shown the effectiveness of our proposed method.
    關鍵字(中)
  • 加權關聯性
  • 旋轉群相似度
  • 混合式學習
  • 回歸預測
  • 分類問題
  • 關鍵字(英)
  • weighted relevance
  • rotating cluster similarity
  • hybrid learning
  • regression estimation
  • classification
  • 論文目次 致謝 i
    摘要 ii
    Abstract iii
    圖目錄 vi
    表目錄 vii
    第一章 導論 1
    1.1. 研究動機與文獻回顧 1
    1.2. 問題描述 4
    1.3. 論文架構 4
    第二章 文獻探討 5
    2.1. 主成分分析(PCA) 5
    2.2. Versatile elliptic basis function neural network (VEBF) 7
    2.2.1. VEBF架構與概述 7
    2.2.2. Geometrical Growth Criterion 8
    2.2.3. Merging Strategy 10
    2.3. LO Method 11
    2.3.1. Structure Identification 13
    2.3.2. Parameter Identification 15
    第三章 研究方法 18
    3.1. 系統流程與架構 18
    3.2. 旋轉群相似度計算(Rotating Cluster Similarity) 20
    3.2.1. 自構性規範(Self-Constructing Criterion) 21
    3.3. 加權關聯性計算(Weighted Relevance) 25
    3.4. 混合式學習法(Hybrid Learning) 27
    3.5. 門檻值檢測(Threshold Checking) 29
    3.6. 演算法與時間複雜度分析(Time Complexity Analysis) 30
    3.7. 範例說明 32
    第四章 實驗結果與分析 38
    4.1. 單標籤分類 38
    4.2. 多標籤分類 41
    4.3. 回歸預測 43
    第五章 結論與未來研究方向 47
    參考文獻 49
    參考文獻 [1] I. Maglogiannis, H. Sarimveis, C.T. Kiranoudis, A.A. Chatziioannou, N. Oikonomou, and V. Aidinis, "Radial basis function neural netwroks classification for the recognition of idiopathic pulmonary fibrosis in microscopic images," IEEE Transaction on Information Technology in Biomedicine, vol. 12, pp. 42-54, January 2008.
    [2] B.S. Lin, B.S. Lin, F.C. Chong, and F. Lai, "Higher-order-statisticsbased radial basis function networks for signal enhancement," IEEE Transactions on Neural Networks, vol. 18, pp.823-832, May 2008.
    [3] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. Addison Wesley, 1999.
    [4] G. Tsoumkas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas, "A java library for multi-label learning," Journal of Machine Learning Research, 2011.
    [5] G. Salton and M. J. McGill, Introduction to Modern Retrieval. McGraw-Hill Book Company, 1983.
    [6] A. Elisseeff and J. Weston, "A kernel method for multi-labelled classification," Advances in Neural Information Processing Systems 14, MIT Press, Cambridge, pp. 681–687, 2002.
    [7] H. Leung, T. Lo, and S. Wang, "Prediction of noisy chaotic time series using an optimal radial basis function neural network," IEEE Transactions on Neural Networks, vol. 12, pp. 1163-1172, September 2001.
    [8] S.M. Chen and C.D Chen, "TAIEX forecasting based on fuzzy time series and fuzzy variation groups," IEEE Transactions on Fuzzy Systems, vol. 19, pp. 1-12, February 2011.
    [9] S.M. Chen, H.P. Chu, and T.W. Sheu, "TAIEX forecasting using fuzzy time series and automatically generated weighted of multiple factors," IEEE Transactions on System, Man, and Cybernetics, Part A, vol. 42, pp. 1485-1495, November 2012.
    [10] A. Kusiak, H. Zheng, and Z. Song, "Short-term prediction of wind farm power: A data mining approach," IEEE Transactions on Energy Conversion, vol. 24, pp. 125-136, March 2009.
    [11] D.W. Aha, "Lazy learning: Special issue editorial," Artificial Intelligence Review, vol. 24, pp. 125-136, February 1997.
    [12] J. MacQueen, "Some methods for classification and analysis of multivariate observations," Proceedings of 5-th Berkeley Symposium on Mathmatical Satistics and Probability, Berkeley, University of California press, vol. 1, pp. 281-297, 1967.
    [13] T. Mitchell, Machine Learning. McGraw-Hill, 1997.
    [14] T. Kohonen, Self-organizaing Maps. Springer, 1995.
    [15] N.B. Karayiannis, "Reformulated radial basis neural networks trained by gradient descent," IEEE Transactions on Neural Networks, vol. 12, pp. 1163-1172, May 1999.
    [16] M.J.L. Orr, Introduction to radial basis function networks. Centre for Cognitive Science, University of Edinburgh, 2, Buccleuch Place, Edinburgh EH8 9LW, Scotland, 1996.
    [17] S. Haykin, Neural Network- A Comprehensive Foundation. Upper Saddle River, NJ, USA: Prentice - Hall, 1999.
    [18] C. Cortes and V. Vapnik, "Support-Vector networks," Machine Learning, vol. 20, pp. 273-297, 1995.
    [19] T. Joachims, " Text categorization with support vector machines: Learning with many relevant features," European Conference on Machine Learning, pp. 137-142, 1998.
    [20] S.R. Gunn, Support Vector Machines for Classification and Regression. UNIVERSITY OF SOUTHAMPTON, 1998.
    [21] M.W. Mak and S.Y. Kung, "Estimation of elliptical basis function parameters by the EM algorithm with application to speaker verification," IEEE Transactions on Neural Networks, vol. 11, pp. 961-969, July 2000.
    [22] J.C. Luo, Q.X. Chem, J. Zheng, Y. Leung, and J.H. Ma, "An elliptical basis function network for classification of remote-sensing images," IEEE International on Geoscience and Remote Sensing Symposium, vol. 6, pp. 3489-3494, 2003.
    [23] S. Jaiyen, C. Lursinsap, and S. Phimoltares, "A very fast neural learning for classification using only new incoming datum," IEEE Transactions on Neural Networks, vol. 21, pp. 381-392, March 2010.
    [24] G. Tsoumakas and I. Katakis, "Multi-label classification: An overview," International Journal of Data Warehousing and Mining, vol. 3, pp. 1-13, 2007.
    [25] G. Tsoumakas, I. Katakis and I. Vlahavas, "Random k-labelsets for multi-label classification," IEEE Transactions on Knowledge and Data Engineering, vol. 23, pp. 1079-1088, July 2011.
    [26] M. Boutell, J. Luo, X. Shen, and C. Brown, "Learning multi-label scene classification," Pattern Recognition, vol. 37, pp. 1757-1771, March 2004.
    [27] H.Y. Lo, S.D. Lin, and H.M. Wang, "Generalized k-labelsets ensemble for multi-label and cost-sensitive classification," IEEE Transactions on Knowledge and Data Engineering, vol. 26, pp. 1679-1691, July 2014.
    [28] R.E. Schapire and Y. Singer, "BoosTexter: A boosting-based system for text categorization," Machine Learning, vol. 39, pp. 135-168, May 2000.
    [29] A. McCallum, "Multi-label text classification with a mixture model trained by EM," Working Notes of the AAAI99 Workshop on Text Learning, 1999.
    [30] M.L. Zhang and Z.H. Zhou, "Multilabel neural networks with applications to functional genomics and text categorization," IEEE Transactions on Knowledge and Data Engineering, vol. 18, pp. 1138-1351, October 2006.
    [31] M.L. Zhang and Z.H. Zhou, "MLKNN: A lazy learning approach to multi-label learning," Pattern Recognition, vol. 40, pp. 2038-2048, July 2007.
    [32] M.L. Zhang, "ML-RBF: RBF neural networks for multi-label learning," Neural Processing Letters, vol. 29, pp. 61-74, April 2009.
    [33] A.J. Smola and B. Scholkopf, "A tutorial on support vector regression," Statistics and Computing, vol. 14, pp. 199-222, August 2004.
    [34] G.Wang, D.Y. Yeung, and F.H. Lochovsky, "A new solution path algorithm in support vector regression," IEEE Transactions on Neural Networks, vol. 19, pp. 1753-1767, October 2008.
    [35] D. Li, R.M. Mersereau, and S. Simske, "Blind image deconvolution through support vector regression," IEEE Transactions on Neural Networks, vol. 18, pp. 931-935, May 2007.
    [36] D.H. Hong and C. Hwang, "Interval regression analysis using quadratic loss support vector machine," IEEE Transactions on Fuzzy Systems, vol. 13, pp. 229-237, April 2005.
    [37] C.C Chuang, "Fuzzy weighted support vector regression with a fuzzy partition," IEEE Transactions on System, Man, and Cybernetics, Part B: Cybernetics, vol. 37, pp. 630-640, June 2007.
    [38] P.Y. Hao and J.H. Chiang, "Fuzzy regression analysis by support vector learning approach," IEEE Transactions on Fuzzy Systems, vol. 16, pp. 428-441, April 2008.
    [39] S.J. Lee and C.S. Ouyang, "A neuro-fuzzy system modeling with self-constructing rule generation and hybrid SVD-based learning," IEEE Transactions on Fuzzy Systems, vol. 11, pp. 341-353, June 2003.
    [40] J.A.K. Suykens and J. Vandewalle, "Least squares support vector machine classifiers," Neural Process Letter, vol. 9, pp. 293-300, June 1999.
    [41] G.B. Huang, Q.Y. Zhu, and C.K. Siew, "Extreme learning machine: A new learning scheme of feedforward neural networks," Proceeding IJCNN, vol. 2, pp. 985-990, 2004.
    [42] G.B. Huang, H.M. Zhou, X.J. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification," IEEE Transactions on System, Man, and Cybernetics, Part B: Cybernetics, vol. 42, pp. 513-529, April 2012.
    [43] G.H. Golub and C.F.V. Loan, Matrix computations. Baltimore, MD, USA: The Johns Hopkins University Press, 1996.
    [44] K. Pearson, "On lines and planes of closest fit to systems of points in space," Philosophical Magazine, vol. 52, pp. 559-572, 1901.
    [45] H. Hotelling, "Analysis of a complex of sattistical variables into principal componetns," Journal of Educational Psychology, vol. 24, pp. 417-4412, 1933.
    [46] A. Asuncion and D. Newman. UCI machine learning repository. Schl. Inf. Comput. Sci. Univ. California, Irvine, CA, 2007
    [47] N.T. Hagna, H.B. Demuth, and M.H. Beale, Neural network design. PWS Pub. Co., 1995.
    [48] MATLAB SVM. Available: http://www.mathworks.com/help/stats/svmtrain.html.
    [49] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas, "Mulan: A Java library for multi-label learning," Journal of Machine Learning Research, vol. 12, pp. 2411-2414, 2011.
    [50] Mulan: A Java library for multi-label learning. Available: http://mulan.sourceforge.net/datasets-mlc.html.
    [51] Code for multi-label classification learning . Available: http://cse.seu.edu.cn/people/zhangml/resources.htm.
    [52] M.Mike, Statistical datasets. Dept. Statist. Univ. Carnegie Mellon, Pittsburgh, PA, 1989.
    [53] StatLib dataset. Available: http://lib.stat.cmu.edu/datasets/.
    口試委員
  • 歐陽振森 - 召集委員
  • 劉志峰 - 委員
  • 林永申 - 委員
  • 潘欣泰 - 委員
  • 李錫智 - 指導教授
  • 口試日期 2014-12-10 繳交日期 2014-12-30

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫