博碩士論文 etd-1131114-095139 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 邱郁舒(Yu-Shu Chiou) 電子郵件信箱 E-mail 資料不公開
畢業系所 電機工程學系研究所(Electrical Engineering)
畢業學位 碩士(Master) 畢業時期 103學年第1學期
論文名稱(中) 粒子群最佳化平行演算法的應用及其在 MapReduce 上的實作
論文名稱(英) Application of Particle Swarm Optimization based Parallel Algorithm and its implementation on MapReduce
檔案
  • etd-1131114-095139.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    紙本論文:5 年後公開 (2019-12-31 公開)

    電子論文:使用者自訂權限:校內 5 年後、校外 5 年後公開

    論文語文/頁數 中文/60
    統計 本論文已被瀏覽 5626 次,被下載 51 次
    摘要(中) 本研究使用粒子群最佳化平行演算法 ( Particle Swarm Optimization based Parallel Algorithm, PSOPA ) 針對照明控制管理問題求最低能耗解,並且實作在單一機器 ( S-PSOPA ) 與多台機器 ( MR-PSOPA ) 上,值得注意的是本實作S-PSOPA與MR-PSOPA於能耗方面的實驗結果完全一致並在此前提下比較執行時間上的優劣,除此之外模擬更複雜的問題接續比較執行時間與所求能耗。
    MR-PSOPA採用雲端運算中屬於開放原始碼的Hadoop架構做為建置平台並且利用HDFS處理PSOPA中必要的資料傳遞行為,最後將PSOPA實作於MapReduce框架上。實驗結果顯示MR-PSOPA在粒子群數量足夠多的情況下其執行時間比S-PSOPA來得少並且當問題變得複雜時其執行時間更明顯少於S-PSOPA。此外,由實驗結果得知MR-PSOPA能處理S-PSOPA無法處理的更為複雜的照明管理控制問題。
    摘要(英) In this study, we apply a Particle Swarm Optimization based Parallel Algorithm ( PSOPA ) to deal with the problem of lighting control management for seeking the lowest power consumption. The algorithm is implemented on standalone ( S-PSOPA ) as well as cluster platforms ( MR-PSOPA ). The two versions produce identical results with respect to power consumption. Under the condition of getting identical results, S-PSOPA and MR-PSOPA are compared on efficiency for complex lighting control problems.
    MR-PSOPA is implemented in mapreduce and information delivery between subgroups is accomplished by HDFS in Hadoop which is open source in the field of cloud computing. Experimental results show that MR-PSOPA performs better than S-PSOPA in terms of execution time when the number of particles is large enough. Furthermore, MR-PSOPA can robustly solve more complex problems which S-PSOPA may have difficulty with.
    關鍵字(中)
  • 平行演算法
  • 粒子群最佳化
  • 雲端運算
  • MapReduce
  • Hadoop
  • 照明控制
  • 關鍵字(英)
  • Lighting control
  • Hadoop
  • MapReduce
  • Cloud Computing
  • Particle Swarm Optimization
  • Parallel Algorithm
  • 論文目次 致謝 i
    摘要 ii
    Abstract iii
    圖目錄 vi
    表目錄 viii
    第一章 導論 1
    1.1. 研究背景與目的 1
    1.1.1. 照明控制 1
    1.1.2. 研究目的 2
    1.1.3. 問題說明 2
    1.2. 論文架構 5
    第二章 文獻探討 6
    2.1. 粒子群最佳化演算法 6
    2.1.1. 粒子群演算法的組成要件 6
    2.1.2. 粒子群演算法流程(如圖 2 1所示) 6
    2.2. Hadoop 7
    2.2.1. MapReduce 8
    2.2.2. HDFS 10
    第三章 研究方法 11
    3.1. PSOPA 11
    3.1.1. 粒子群位置及速度的更新 11
    第四章 實驗結果與分析 16
    4.1. 實驗資料 16
    4.2. 實驗一 16
    4.2.1. 實驗環境架設 16
    4.2.2. 實驗一結果及分析 16
    4.3. 實驗二 22
    4.3.1. 實驗環境架設 22
    4.3.2. 實驗二結果及分析 22
    第五章 結論與未來展望 45
    5.1. 結論 45
    5.2. 未來研究方向 45
    參考文獻 46
    參考文獻 [1] J. Kennedy and R. C. Eberhart, “Particle swarm optimization(PSO),” IEEE International Conference on  Neural Networks, vol.4, pp. 1942 – 1948, Nov/Dec 1995.
    [2] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” IEEE International Conference on Evolutionary Computation Proceedings, Page 69 – 73, May 1998.
    [3] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients,” IEEE Transactions on Evolutionary Computation, vol.8, pp. 240 – 255, June 2004.
    [4] M. G. de Carvalho, A. H.F. Laender, M. A. Goncalves, and A. S. da Silva. “A genetic programming approach to record deduplication,” IEEE Transactions on Knowledge and Data Engineering, 24(3):399–412, 2012.
    [5] M. Clerc, “The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization,” Proceedings of the 1999 Congress on Evolutionary Computation, vol.3 , July 1999.
    [6] P. N. Suganthan, “Particle Swarm Optimiser with Neighbourhood Operator,” Proceedings of the 1999 Congress on Evolutionary Computation, vol.3, July 1999.
    [7] A. Carlisle, G. Dozier, “Adapting Particle Swarm Optimization to Dynamic Environment,” ICAI, Las Vegas, NV, Vol. I, pp 429 - 434., 2000.
    [8] X. Hu, R. Eberhart, “Multiobjective optimization using dynamic neighborhood particle swarm optimization,” Proceedings of the 2002 Congress on Evolutionary Computation, vol.2, pp. 1677-1681, May 2002.
    [9] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi, “A Particle Swarm Optimization for Reactive Power and Voltage Control Considering Voltage Security Assessment,” Power Engineering Society Winter Meeting, vol.2, Page 1232 – 1239, Feb 2001.
    [10] Z. L. Gaing, “Particle swarm optimization to solving the economic dispatch considering the generator constraints,” IEEE Transactions on Power Systems, vol.18, Page 1187 – 1195, Aug. 2003.
    [11] S. Cui and Daniel S. Weile, “Application of a parallel particle swarm optimization scheme to the design of electromagnetic absorbers,” IEEE Transactions on Antennas and Propagation, vol.15, Page 3616 – 3624, Nov. 2005.
    [12] A. I. Selvakumar, K. Thanushkodi, “A New Particle Swarm Optimization Solution to Nonconvex Economic Dispatch Problems,” IEEE Transactions on Power Systems, vol.22, Page 42 - 51, Feb. 2007.
    [13] H. M. Jeong, H. S. Lee, and J. H. Park, “Application of parallel particle swarm optimization on power system state estimation,” Transmission & Distribution Conference & Exposition: Asia and Pacific, pp. 1 - 4, Oct. 2009.
    [14] B. Mahdad, K. Srairi, and T. Bouktir, “Improved parallel PSO solution to Economic Dispatch with Practical Generator Constraints,” 15th IEEE Mediterranean Electrotechnical Conference, Page 314 – 319, April 2010.
    [15] C. L. Chen, R. M. Jan, T. Y. Lee, and C. H. Chen, “A Novel Particle Swarm Optimization Algorithm Solution of Economic Dispatch with Valve Point Poading,” Journal of Marine Science and Technology, Vol. 19, No. 1, pp. 43-51, 2011.
    [16] J. F. Chang, S. C. Chu, John F. Roddick, and Jeng-Shyang Pan, “A Parallel Particle Swarm Optimization Algorithm With Communication Strategies,” Journal of Information Science and Engineering, Vol. 21, No. 4, pp. 809-818, 2005.
    [17] G. Venter, J. Sobieszczanski-Sobieski, “Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations,” Journal of Aerospace Computing, Information, and Communication, 2006.
    [18] A. Lančinskas, J. Žilinskas, and P. M. Ortigosa, “Investigation of Parallel Particle Swarm Optimization Algorithm With Reduction of the Search Area,” 2010 IEEE International Conference on Cluster Computing Workshops and Posters (CLUSTER WORKSHOPS), Page 1 - 5, 2010.
    [19] S. Aravind Babu, S. Babu Ramki, and P. Jayakrishnan, “Design of particle in parallel architecture co-processor for computationally demanding Particle Swarm Optimization Algorithm,” Communication and Conservation of Energy (ICGCE), 2013 International Conference on Green Computing, pp. 240 - 243, Dec. 2013.
    [20] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters”, in Proceedings of the 6th Conference on Symposium on Operating Systems Design and Implementation, pp.10-10, 2004.
    [21] S. Ghemawat, H. Gobioff, and S.T. Leung, “The Google File System” in Proceedings of the 19th ACM Symposium on Operating Systems Principles, 2003
    [22] T. White, The Definitive Guide, Third Edition:O’Reilly Media,2012
    [23] Y. Bu, B. Howe, M. Balazinska and M. D. Ernst, “HaLoop: Efficient Iterative Data Processing on Large Clusters,” in Proceedings of the Very Large Database Endowment, Volume 3 ,Singapore, 11-17 September, 2010.
    [24] Y. Bu, B. Howe, M. Balazinska and M. D. Ernst, “The HaLoop Approach to Large-Scale Iterative Data Analysis,” in The VLDB Journal (VLDBJ), Volume 21, Number 2, April, 2012
    [25] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. H. Bae, J. Qiu and G. Fox,” Twister: A Runtime for Iterative MapReduce," in The First International Workshop on MapReduce and its Applications (MAPREDUCE'10) - HPDC2010
    [26] A. W. McNabb, C. K. Monson, and K. D. Seppi, “Parallel PSO Using MapReduce,” 2007 IEEE Congress on Evolutionary Computation (CEC 2007)
    口試委員
  • 吳志宏 - 召集委員
  • 侯俊良 - 委員
  • 林永申 - 委員
  • 歐陽振森 - 委員
  • 李錫智 - 指導教授
  • 口試日期 2014-12-10 繳交日期 2014-12-31

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫