Responsive image
博碩士論文 etd-0707120-115307 詳細資訊
Title page for etd-0707120-115307
論文名稱
Title
磁場在固化過程中所引致之表面粗糙度之影響
Effects of incident magnetic field on surface roughness during solidification
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
44
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-07-28
繳交日期
Date of Submission
2020-08-07
關鍵字
Keywords
表面張力、兩相流、相位場法、角落流、熱毛細力、磁場
Phase field method, Two-phase flow, Corner flow, Thermocapillary force, Capillary pressure, incident magnetic field.
統計
Statistics
本論文已被瀏覽 5651 次,被下載 0
The thesis/dissertation has been browsed 5651 times, has been downloaded 0 times.
中文摘要
本研究採用Comsol兩相流模組和相位場模擬金屬表面受磁場和熱通量及所產生鎔融及固化過程之暫態熱流行為之影響。統御方程式為質量、動量、能量守恆方程式、磁場方程式及相位場方程式。結果顯示金屬流場之溫度、壓力、流線和相位場分佈。本研究也探討融化區與未融化區間角落流與溫度場。角落流影響固化後之表面湧起與漣漪。本研究發現表面粗糙度受到角落流之影響,其驅動力為表面張力及熱毛細力。
Abstract
This study use two-phase flow module in COMSOL4.3a to predict the melting and cooling a metal subject to convection at boundary and incident magnetic field at the Top boundary. This study includes conservation equations of mass, momentum, energy and phase-field function. This results show distribute of velocity, temperature, pressure, streamline and phase field. This work is also focused on the corner region between the molten pool and solidified region. The corner flow region is responsible for surface humping, gouging, rippling etc. affected by thermocapillary force and capillary pressure.
目次 Table of Contents
目錄
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
圖次 vii
符號說明 viii
第一章 緒論 1
1.1 研究背景 1
1.2 二相流、相位場法模擬方法簡介 1
1.3 本論文研究內容簡介 2
1.4 論文架構 3
第二章 方程式與模型設定 4
2.1模型之統御方程式 4
2.1.1相位場法方程式 4
2.1.2質量守恆方程式 5
2.1.3動量方程式 6
2.1.4能量方程式 10
2.1.5磁場方程式 10
2.2模型區域設定 11
2.2.1模型幾何 11
2.2.2 模型網格分佈 12
2.2.3初始值設定 13
2.2.4模型區域邊界設定 14
2.2.5模擬流程圖 17
2.2.6各流體性質 19
第三章 模擬結果 20
3.1 模擬條件與說明 20
3.2基本性質模擬圖 20
3.3 模擬結果 23
第四章 結論 30
參考文獻 31
參考文獻 References
[1] K. Ishizaki, N. Araki, and H. Murai, 1965, “Penetration in arc welding and convection in molten metal”, J. Japan Welding Society, Vol. 34, pp.146-153.
[2] E. Friedman, 1978, “Analysis of weld puddledistortion and its effect on penetration”, J. Welding, Vol.57, pp.161-166.
[3] S. Kuo and Y. H. Wang, 1986, “Weld pool convection and its Effect”, J. Welding, Vol.65, pp.63-s-70-s.
[4] C. R. Heiple and J. R. Roper, 1982, “Mechanism for minor element effect on GTA fusion zone geometry”, J. Welding, Vol.61, pp.97-102
[5] C. Chan, J. Mazumder and M. M. Chan, 1984, “ A two-dimension transient modle for convection inlaser Melted Pool”, Metal. Trans., Vol.15A, pp.2175-2184.
[6] A. Paul and T. Debroy, 1988, “Free surface flow and heat transfer in conduction mode laser welding”, Metal. Trans. Vol.19B, pp.851-858.
[7] L. C. Wrobel and M. H. Aliabadi, 2003, The boundary element methods. Wiley, UK.
[8] V. Cristini, J. Bławzdziewicz, and M. Loewenberg, 1998, “Drop breakup in three-dimensional viscous flows”, Phsics fluids, Vol. 10, pp.1781-1783
[9] H. H. Hu, N. A. Patankar and M. Y. Zhu, 2000, “Direct numerical simulations of fluid–solid systems using the arbitrary lagrangian–eulerian technique”, Journal of Computational Physics 169, pp.427-462
[10] S. Ramaswamy and L.G. Leal, 1998, “ The deformation of a viscoelastic drop subjected to steady uniaxial extensional flow of a Newtonian fluid”, J. Non-Newtonian fluid mech., 85, pp.127-163
[11] S. Osher and N. Paragios, 2003, Geometric level set methods in imaging, vision, and graphics. Springer- Verlag. New York.
[12] H. Emmerich,2003, The diffuse interface approach in materials science, Springer-Verlag. New York
[13] J. S. Rowlinson,1979, Translation of J.D. van der Waals’ “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”. Journal of Statistical Physics, Vol.20,No.2
[14] O. Penrose and P. C. Fife, 1990, “Thermodynamically consistent models of phase-field type for the kinetic of phase transitions”, Physica D, North-Holland.
[15] P. Yue and J. J. Feng, 2004, “A diffuse-interface method for simulating two-phase flows of complex fluids”, J. Fluid Mech, Vol. 515, pp.293-317.
[16] P. C. Hohenberg and B. I. Halperin, 1977: “Theory of dynamic critical phenomena”, Rev. Mod. Phy., Vol. 49, pp.435-479.
[17] D. Jacqmin, 1999: “Calculation of two-phase Navier–Stokes flows using Phase-Field modeling”, Journal of Computational Physics, 155, pp.96-127
[18] M. Verschueren, F. N. Van De Vosse and H. E. H. Meijer, 2001: “Diffuse-interface modolling of thermocapillary flow instabilities in a Hele-Shaw cell”, J. Fluid Mech., Vol434, pp.153-166.
[19] Cahn, J. W. & Hilliard, J. E. 1958 Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, pp.258-267.
[20] F. Kong, H. Zhang and G.Wang,2008“Numerical Simulation of Transient Multiphase Field during Hybird Plasma-Laser Deposition Manufacturing”,J.Heat Transfer,Vol.130,NO.112101,pp.1-7.
[21] S. Karagadde, S. Sundarrij,P.Dutta,2012: “A model for growth and engulfment of gas microporosity during aluminum alloy solidification process”Computational Meterials Science 65,pp.383-394
[22] Y. Sun and C. Beckermann, 2007, “Sharp interface tracking using the phase-field equation”, Journal of Computational Physics 220, pp.626-653.
[23] T. E. Morthland and J. S. Walker, 1999, “Instabilities of dynamic thermocapillary liquid layers with magnetic fields”, Journal of Fluid Mechanics, vol.130, pp.87-108.
[24] Takasu, T., & Toguri, J. (1998). “ Pyrometallurgical Significance of Marangoni Flow: Mechanism and Contributions to Processing”. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 356(1739), 967-980. Retrieved from http://www.jstor.org/stable/54908
[25] N. D. Lang and W. Kohn, 1970. “Theory of Metal Surfaces: Charge Density and Surface Energy” Physical Review B, Vol. 1, Iss. 12, pp.4555-4568. Retrieved from https://doi.org/10.1103/PhysRevB.1.4555
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間(其他) user define other
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-08-07
校外 Off-campus:開放下載的時間 available 2026-08-07

您的 IP(校外) 位址是 216.73.216.89
現在時間是 2025-06-24
論文校外開放下載的時間是 2026-08-07

Your IP address is 216.73.216.89
The current date is 2025-06-24
This thesis will be available to you on 2026-08-07.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2025-08-07

QR Code