論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available
論文名稱 Title |
低電壓低功率CMOS運算轉導放大器和電流運算放大器 Low Voltage, Low Power CMOS OTA and COA |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
64 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2004-06-30 |
繳交日期 Date of Submission |
2004-07-15 |
關鍵字 Keywords |
低電壓、低功率、放大器、轉導、電流增益、輸出阻抗、輸入阻抗、功率消耗 low voltage, low power, operational transconductance amplifier, COA, output impedance, current operational amplifier, transconductance, current gain, amplifier, OTA, COAs |
||
統計 Statistics |
本論文已被瀏覽 5940 次,被下載 56 次 The thesis/dissertation has been browsed 5940 times, has been downloaded 56 times. |
中文摘要 |
提出的主要研究為低電壓、低功率放大器,其中一個為寬擺幅、線性轉導的運算轉導放大器,而另外二個電路為高性能的電流運算放大器,所有放大器的供應電壓都低於一個起始電壓加上二個過驅電壓值 (VTH+2VOD)。 在這篇論文中,電路的供應電壓為1V。模擬結果顯示運算轉導放大器有0.7V的線性範圍,轉導為147μA/V,功率消耗是0.133mW。在電流放大器的二個設計電路中,模擬結果顯示COA(1)的電流增益為143,輸入阻抗為110Ω,輸出阻抗是240KΩ以及功率消耗為0.15mW。在COA(2)的模擬結果其電流增益達到110,功率消耗是0.07mW,輸入以及輸出阻抗分別為95Ω和500KΩ。 所有的放大器是利用HSPICE分析研究,並且在TSMC 0.35μm 2p4m CMOS製程下製作完成。 |
Abstract |
Low voltage, low power amplifiers are proposed. One of the operational amplifiers is an Operational Transconductance Amplifier (OTA) with wide input and output swing and constant gm. The second and third amplifiers are high-performance Current Operational amplifiers (COAs). All amplifiers have power supply as low as one threshold voltage plus two overdrive voltage. In this thesis, the supply voltage is 1V. Simulation results show that the OTA has the maximum linear range over 0.7V. The transconductance can be 147μA/V, the power consumption is 0.133mW. There are two designs of the COA. Simulation results show COA(1) with a current gain of 143. The input impedance is 110Ω, the output impedance is 240KΩ and the power consumption is 0.15mW. In the simulation results of the COA(2), the current gain is 110. The DC power dissipation is 0.07mW. The input and output impedance are 95Ω and 500KΩ, respectively. All the proposed amplifiers are implemented on a TSMC 0.35μm 2p4m CMOS process technology and analyzed using HSPICE. |
目次 Table of Contents |
Contents Abstract Chapter 1 Introduction Chapter 2 Low Voltage, Low Power CMOS OTA 2.1 Basic Model of the OTA 2.2 Previous Low Voltage CMOS OTAs 2.2.1 OTA Circuit with Source Cross-Couple Pair 2.2.2 OTA Circuit with Linearized Differential Pair 2.2.3 OTA Circuit with Triode Transistors 2.2.4 Discussions of the Previous Low Voltage CMOS OTAs 2.3 Basic Idea of the Proposed OTA 2.3.1 The Floating Voltage Control Voltage Source Operational Amplifier 2.4 Design of the Low Voltage, Low Power OTA 2.4.1 Basics of the Proposed Fully Differential OTA 2.4.2 Discussions of the Input Range Chapter 3 Simulation and Experimental Results of the Proposed OTA 3.1 The OTA Simulation Results 3.1.1 Characteristics of the OTA 3.1.2 Simulation Results Discussions 3.2 The OTA Experimental Results 3.2.1 Measured Results 3.2.2 Experimental Results Discussions Chapter 4 Low Voltage, Low Power CMOS COA 4.1 Basic Model of the COA 4.2 Previous Low Voltage CMOS COAs 4.2.1 COA Circuit with Technique of the Current Mirror 4.2.2 COA Circuit with Class AB Input Stage 4.2.3 COA Circuit with Passive Resistors 4.2.4 Discussions of the Previous Low Voltage CMOS COAs 4.3 Design of the Low Voltage, Low power COA 4.3.1 Differential-Output of the COA(1) with Current Mirror 4.3.2 Differential-Output of the COA(2) with Differential pair Chapter 5 Simulation and Experimental Results of the Proposed COA 5.1 The COA Simulation Results 5.1.1 Characteristics of the COA(1) 5.1.2 Characteristics of the COA(2) 5.1.3 Simulation Results Discussions 5.2 The COA Experimental Results 5.2.1 Measured Results 5.2.2 Experimental Results Discussions Conclusions Reference |
參考文獻 References |
References [1] Hanspeter Schmid “Approximating the Universal Active Element”, IEEE Circuits and Systems, pp. 1160-1169, 2000. [2] A. Payne and C. Toumazou, “Analog amplifiers: Classification and generalization”, IEEE Trans, Circuits Syst. I, vol. 43, pp. 43-50, Jan.1996. [3] A. Baschirotto and R. Castello, “A 1-V 1.8-MHz CMOS switched-opamp SC filter with rail-rail output swing,”IEEE J.Solid-State Circuits, vol. 32, pp. 1979-1996, Dec. 1997. [4] V.Peluso, P.Vancorenland, M. Steyaert, and W.Sansen, “900mV differential class AB OTA for switched opamp applications”, Electron. Lett. vol. 33, no. 17, pp. 1455-1456, Aug. 14, 1997. [5] G..Ferri, W.Wansen, and V. Peluso,“A low voltage fully differential constant-Gm rail-to-rail CMOS operational amplifier,”Analog Integr. Circuits Signal Process, vol. 16, pp. 5-15, 1998. [6] Koziel, S.; Szczepanski, S.; Schaumann, R., “Design of highly linear tunable CMOS OTA “, IEEE Circuits and Systems, vol.3, pp. III-731 -III-734, 2002. [7] Pankiewicz, B.; Szczepanski, S. “ Body-tunable CMOS OTA for continuous-time analog filter applications “, IEEE Electronics, Circuits, and Systems, vol.1, pp. 132-135, Oct 1996. [8] Stanislaw Szczepanski, “VHF Fully-Differential Linearized CMOS Transconductance Element and Its Applications “, IEEE Circuits and Systems, vol.5, pp. 97-100, Jun 1994. [9] Szczepanski, S.; Jakusz, J.; Schaumann, R., “A linear fully balanced CMOS OTA for VHF filtering applications”, IEEE Circuits and Systems, vol.44, pp. 174-187, Mar 1997. [10] Xuguang Zhang, Brent J. Maundy, “A Novel Low-voltage Operational Transconductance Amplifier and its Applications”, IEEE Circuits and Systems, pp. II-661 – II-664, 2000. [11] Maundy, B.J.; Finvers, I.G.; Aronhime, P., “Cross coupled transconductance cell with impr- oved linearity range “, IEEE Circuits and Systems, vol.5, pp. 157-160, 2000. [12] A.Nedungadi, and T.R.Viswanathan. “Design of linear CMOS transconductance element.” IEEE Trans. on Circuit and Systems, vol.31, pp.891-894, October 1984. [13] Galan. J.A. Carvajal. R.G. Munoz. F. Torralba, A. and Ramirez-Angulo. J. “Low power low voltage class AB linear OTA for HF filter with a large tuning range” Proc. of the IEEE International Symposium on Circuits and System. ISCAS’02, vol. II. pp. 9-12 [14] J.Galan, R.G. Carvajal, F.Munoz, “A Low-Power Low-Voltage OTA-C Sinusoidal Oscillator with more than two decades of Linear Tuning Range”, IEEE Circuits and Systems, pp. I-677 – I-680. [15] Ibaragi, E.; Hyogo, A.; Sekine, K., “ A 1-MHz 7th-order continuous-time lowpass filter using very low distortion CMOS OTAs “, IEEE Circuits and Systems, vol.2, pp. 569-572, 2000. [16] L.Bouzerara, M.T.Belaroussi, “Low-Voltage, Low-Power and high gain CMOS Operational Transconductance Amplifier”, IEEE Circuits and Systems, pp.I-325 – I-328, 2002. [17] T.akahideSato, Kazuyuki Wada, Shigetaka Takagiand Nobuo Fujii, “Novel Voltage-regulating Circuit for Low-Voltage and Low-Power OTA realization using MOSFET’s in the Non-saturation Region”, IEEE Circuits and Systems, pp.V-477 – V-480, 2000. [18] J.Ramirez-Angulo, A.Torralba, R.G.Carvajal, and J.Tombs “Low-Voltage CMOS Operational Amplifier with Wide Input-Output Swing Based on a Novel Scheme”, IEEE Circuits and Systems, pp.772 – 774, 2000. [19] Ramirez-Angulo, J. Carvaial, R.G. Torralba, A.Galan, J. Vegal-Leal A.P. and Tombs J. “The flipped voltage follower: A useful cell for low-voltage, low power circuit design”. Proc. of the IEEE International Symposium on Circuits and Systems. ISCAS’02. vol. III, pp. 615-618. [20] T.Vanisri and C.Toumazou, “On the design of low-noise current-mode optical preamplifiers”, Analog Integr. Circ. Signal Processing, no. 2, pp.179-195, 1992. [21] L.van den Broken and A.Nieuwkerk, “Wide-band integrated receiver with improved dynamic range using a current switch at the input”, IEEE J.Solid-State Circuit, vol.28, pp.862-864, July 1993. [22] R.Kauert, W.Budde, and A.Kalz, “A monolithic field segment photo sensor system”, IEEE J.Solid-State Circuits, vol.30, pp. 807-811, July 1995. [23] Igor Mucha, “Low-Voltage Current Operational Amplifier with a very Low Current Consumption”, IEEE Circuits and Systems, pp.525-528. 1996. [24] Bendong Sun and Fei Yuan, “New Low-Voltage Fully-Balanced Wide-Band Differential CMOS Current Amplifier”, IEEE Circuits and Systems, pp.II-57 – II-60. 2002. [25] G. Palmisano and S. Pennisi, “Low-Voltage Continuous-Time CMOS Current Amplifier with Dynamic Biasing”, IEEE Circuits and Systems, pp.I-312 – I-315. 2001. [26] G. Palmisano and S. Pennisi, “A Class AB CMOS Current Mirror with Low-Voltage Capability”, IEEE Circuits and Systems, pp.891 – 894. 1999. [27] G. Palmisano and S. Pennisi, “Low-Voltage Dynamic Biasing Technique for CMOS class AB Current-Mode circuits”, IEEE Circuits and Systems, pp.891 – 894, Jan 2000. [28] Salvatore Pennisi, “A Low-Voltage Design Approach for Class AB Current-Mode Circuits”, IEEE Circuits and Systems, pp.273-279, 2002. [29] S. Pennisi, “Low-Voltage CMOS Current Amplifier and its use for High-performance Voltage Amplifier”, IEEE Circuits and Systems, pp.205-209, 2003. [30] S. Pennisi, “Low-Voltage CMOS Current Operational Amplifier with Class AB Input Stage”, IEEE Circuits and Systems, pp.1525-1528, 2001. [31] R. Jacob Baker, Harry W. Li and David E. Boyce,” CMOS Circuit Design, Layout, and Simulation”, pp. 755-760. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus:永不公開 not available 您的 IP(校外) 位址是 216.73.216.89 論文開放下載的時間是 校外不公開 Your IP address is 216.73.216.89 This thesis will be available to you on Indicate off-campus access is not available. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |