論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
板框式壓濾電脫水系統對於不同生物污泥脫水效能及其中之鄰苯二甲酸酯類流布研究 Study on Performance of Filter Press Electrodewatering of Biological Sludges and Occurrence of Phthalates Therein |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
189 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2013-07-18 |
繳交日期 Date of Submission |
2013-08-27 |
關鍵字 Keywords |
主成分分析、生物污泥、電動力、電脫水、田口式試驗設計、板框式壓濾脫水機、鄰苯二甲酸酯類 Biological sludge, Electrodewatering, Electrokinetics, Plate and frame filter press, Phthalate esters, Taguchi method, Principal component analysis |
||
統計 Statistics |
本論文已被瀏覽 5789 次,被下載 188 次 The thesis/dissertation has been browsed 5789 times, has been downloaded 188 times. |
中文摘要 |
本研究利用電動力輔助傳統板框式壓濾脫水機,進行電脫水系統之效能研究,並在對於降低兩種生物污泥的最終污泥餅含水率的同時,對電脫水過程中生物污泥所含的鄰苯二甲酸酯類進行流布之分析,探究本電脫水系統在脫水過程中是否對於生物污泥中鄰苯二甲酸酯類有顯著去除效應。生物污泥進行瓶杯試驗後,都市下水生物污泥及事業廢水生物污泥最佳的調理藥劑與劑量分別為乳化態絮凝劑(0.03 wt%)及粉狀強陽離子型或弱陽離子型絮凝劑(0.01 wt%)。此外,本試驗過程中亦對濾液進行品質分析以及電脫水系統之溫度與電流密度量測,以期歸納出其變化對於最終污泥餅含水率抑或是污染物去除能力之影響為何。 接著利用田口式實驗設計法結合主成分分析,以最終污泥餅含水率、電動力能耗及施加電場後之濾液占總體濾液百分比做為三種品質特性,計算出兩種生物污泥之最佳操作條件。而最佳條件的驗證試驗中,都市下水生物污泥其最終污泥餅含水率及電動力能耗分別為62.62%及34.98 kWh/ton;事業廢水生物污泥部分則分別為65.64%及98.15 kWh/ton。 本試驗分析之八種鄰苯二甲酸酯類(DMP、BBP、DEP、DnBP、DEHP、DnOP、DiNP及DiDP),其檢出率及檢出濃度因化合物的不同有極大差異,檢出率的數值為0~100%不等。樣品之檢出濃度在液相部分其濃度分布範圍為0.013~2363.0 μg/L,固體部分則在21.4~7232 μg/kg之間。接著,以檢出率100%的DnBP及DEHP計算回收率及去除率時,在都市下水生物污泥的平均去除率分別為86.95%及74.78%;事業廢水生物污泥則分別有70.93%與87.41%的平均去除率。 綜合言之,本研究利用電脫水系統進行不同生物污泥之試驗,顯示外加電場確實可有效提升污泥脫水效率,並對於其中所含之鄰苯二甲酸酯類有著去除效應,且於適當的操作條件下,可符合經濟效益亦同時兼具技術及經濟之可行性。 |
Abstract |
The objective of this study was to employ an electric field to enhance the dewatering performance of two types of biological sludge by a pilot-scale plate and frame filter press. Meanwhile, the occurrence of phthalate esters (PAEs) in the sludges was analyzed to evaluate the removal efficiencies of PAEs. Through the jar test, emulsified flocculant (0.03 wt%) and powdered strong/weak cationic flocculant (0.01 wt%) were selected as conditioning agents for biological municipal sludge (BMS) and biological industrial sludge (BIS), respectively. In addition, the quality of filtrates, varations of filtrate temperature and current densities during the dewatering process were also measured aiming to investigate the influence of these factors on removal efficiencies of PAEs. To find out the optimal dewatering conditions for the concerned sludges, experimental designs based on the Taguchi method were adopted. The moisture content of sludge cake, energy consumption, and percentage of filtrate volume due to electrodewatering against total filtrate volume were the parameters of concern. Under the optimal conditions, the moisture contents of sludge cakes were 62.62% and 65.64% for BMS and BIS, respectively. The corresponding energy consumptions were determined to be 34.98 kWh/ton and 98.15 kWh/ton, respectively. In this study eight PAEs (including DMP, BBP, DEP, DnBP, DEHP, DnOP, DiNP and DiDP) were analyzed. The detection frequencies and concentrations of detected PAEs were different one to another. The dectection frequencies varied from 0 to 100%. The concentrations of PAEs in the liquid phase and solid phase were in the ranges of 0.013-2363.0 μg/L and 21.4-7232 μg/kg, respectively. Due to their detection frequencies of 100%, DnBP and DEHP were selected to evaluate their recoveries and removal efficiencies during the tests. The average removal efficiencies of DnBP and DEHP were found to be 86.95% and 74.78%, respectively for BMS and 70.93% and 87.41%, respectively for BIS. To summarize, it was obvious that the dewatering efficiencies of BMS and BIS increased when an electric field was applied. Meanwhile, the removal efficiencies of PAEs also significantly increased. It appeared that the electrodewatering process employed in this study was technically and economically feasible for various biological sludges. |
目次 Table of Contents |
聲明切結書 i 謝誌 ii 摘要 iii Abstract iv 目錄 v 圖目錄 x 表目錄 xv 照片目錄 xix 第一章 前言 1 1.1研究緣起 1 1.2研究目的 3 1.3研究內容規劃與架構 4 第二章 文獻回顧 7 2.1 生物污泥的產生與水份分佈 8 2.2 生物污泥之調理 11 2.2.1 傳統脫水方式 20 2.2.2 改良式污泥處理方法 21 2.2.2.1超音波輔助污泥脫水 22 2.2.2.2 熱處理乾燥結合脫水設備 23 2.3 電動力法 24 2.3.1 電動力現象與原理 25 2.3.2電滲透脫水 29 2.4 鄰苯二甲酸酯類 32 2.4.1 鄰苯二甲酸酯類於環境中的流布 36 2.4.2 鄰苯二甲酸酯類的去除 38 2.5 田口式試驗設計法結合主成分分析方法尋求最佳操作條件 42 2.5.1 田口式試驗設計 43 2.5.2 主成分分析 45 第三章 試驗設備與方法 48 3.1 生物污泥來源 48 3.1.1 都市下水生物污泥 48 3.1.2 事業廢水處理廠生物污泥 49 3.2 實驗材料與設備 50 3.2.1 實驗材料 50 3.2.2 實驗設備 52 3.2.3 電動力輔助板框式壓濾脫水系統 54 3.3 研究內容 56 3.3.1 污泥調理 57 3.3.2 田口式試驗設計 59 3.3.2.1 品質特性 60 3.3.2.2控制因子 60 3.3.2.3 田口式直交表選定 62 3.3.3濾液品質分析方法 66 3.3.3.1樣品前處理 66 3.3.3.2分析儀器 67 3.4其他試驗及分析方法 70 第四章 結果與討論 71 4.1 生物污泥基本特性分析 71 4.2 生物污泥化學調理 72 4.2.1都市下水生物污泥 73 4.2.2事業廢水生物污泥 74 4.3 板框式壓濾脫水部分之前驅試驗結果 76 4.4 生物污泥脫水試驗結果及實驗後產物之品質分析 77 4.4.1生物污泥脫水試驗之總濾液通量及總累積流量 78 4.4.2生物污泥脫水試驗之濾液pH值 83 4.4.3生物污泥脫水試驗之濾液導電度 87 4.4.4生物污泥脫水試驗之濾液及污泥餅溫度 91 4.4.5生物污泥脫水試驗之電流密度變化 98 4.4.6生物污泥脫水試驗其進料與出料之回收率 102 4.5 田口式實驗設計方法結合主成分分析求最佳操作條件 104 4.5.1都市下水生物污泥 104 4.5.2事業廢水生物污泥 112 4.6最佳試驗操作條件確認試驗 119 4.7生物污泥脫水試驗產物中所含之鄰苯二甲酸酯類流布調查 125 4.7.1 都市下水生物污泥脫水試驗 125 4.7.2事業廢水生物污泥試驗 133 4.7.3兩種不同生物污泥經電脫水試驗後產物中鄰苯二甲酸 酯類流布調查之綜合結果 138 4.8 經濟可行性評估 141 4.8.1都市下水生物污泥 141 4.8.2 事業廢水生物污泥 143 第五章 結論與建議 146 5.1 結論 146 5.1.1 板框式壓濾電脫水系統對於不同生物污泥脫水效能 146 5.1.2板框式壓濾電脫水系統中鄰苯二甲酸酯類流布 148 5.2 建議 149 參考文獻 150 |
參考文獻 References |
英文部分: Al-Asheh, S., R. Jumah, F. Banat, and K. Al-Zoubi, "Electroosmotic Dewatering of Tomato Paste Suspension Under AC Electric Field," Drying Technology, Vol. 23, pp. 1465-1475 (2005). Alatriste-Mondragon F., R. Iranpour, and B. K. Ahring, "Toxicity of Di-(2-ethylhexyl) Phthalate on the Anaerobic Digestion of Wastewater Sludge," Water Research, Vol. 37, No. 6, pp. 1260-1269 (2003). Bagotsky, V. S., "Fundamental of Electrochemistry," John Wiley & Sons, Hoboken, New Jersey, U.S.A. (2006). Banerjee, S. and S. E. Law, "Electroosmotically Enhanced Drying of Biomass," IEEE Transactions on Industry Applications, Vol. 34, No. 5, pp. 992-999 (1998). Barber, J. B. and J. N. Veenstra, "Evaluation of Biological Sludge Properties Influencing Volume Reduction," Water Pollution Control Federation, Vol. 58, No. 2, pp. 149-156 (1986). Barnabé, S., I. Beauchesne, D. G. Cooper, and J. A. Nicell, "Plasticizers and Their Degradation Products in the Process Streams of a Large Urban Physicochemical Sewage Treatment Plant," Water Research, Vol. 42, Nos. 1-2, pp. 153-162 (2008). Barton, W. A., S. A. Miller, and C. J. Veal, "The Electrodewatering of Sewage Sludges," Drying Technology, Vol. 17, No. 3, pp. 497-522 (1999). Bergins, C., S. Berger, and K. Strauss, "Dewatering of Fossil Fuel and Suspension of Ultrafine Particles by Mechanical/Thermal Dewatering," Chemical Engineering and Technology, Vol. 22, No. 11, pp. 923-927 (1999). Böhm, N. and W. M. Kulicke, "Optimization of the Use of Polyelectrolytes for Dewatering Industrial Sludges of Various Origins," Colloid and Polymer Science, Vol. 275, No. 1, pp. 73-81 (1997). Bolong, N., A. F. Ismail, M. R. Salim, and T. Matsuura, "A Riview of the Effects of Emerging Contaminants in Wastewater and Ootions for Their Removal," Desalination, Vol. 239, Nos. 1-3, pp. 229-246 (2009). Churaev, N. V., V. D. Sobolev, and A. N. Zorin, "Measurement of Viscosity of Liquids in Quartz Capillaries, in Thin Liquid Films and Boundary Layers," Academic Press, New York, U.S.A (1970). Citeau, M., O. Larue, and E. Vorobiev, "Influence of Salt, pH and Polyelectrolyte on the Pressure Electro-Dewatering of Sewage Sludge," Water Research, Vol. 45, No. 6, pp. 2167-2180 (2011). Clarke, B. O., and S. R. Smith, "Review of ‘Emerging’ Organic Contaminants in Biosolids and Assessment of International Research Priorities for the Agricultural Use of Biosolids," Environment International, Vol. 37, No. 1, pp. 226-247 (2011). de Oliveira, T. F., O. Chedeville, H. Fauduet, and B. Cagnon, "Use of Ozone/Activated Carbon Coupling to Remove Diethyl Phthalate from Water: Influence of Carbon Textural and Chemical Properties," Desalination, Vol. 276, Nos. 1-3, pp. 359-365 (2011). Derringer, G. and R. Suich, "Simultaneous Optimization of Several Response Variables," Journal of Quality Technology, Vol. 12, No. 4, pp. 214-219 (1980). Eskicioglu, C., R. L. Droste, and K. J. Kennedy, "Performance of Anaerobic Waste Activated Sludge Digesters After Microwave Pretreatment," Water Environment Research, Vol. 79, No. 11, pp. 65-73 (2007). Fang, Z. Q., and H. J. Huang, "Adsorption of Di-n-butyl Phthalate onto Nutshell-based Activated Carbon. Equilibrium, Kinetics and Thermodynamics," Adsorption Science and Technology, Vol. 27, No. 7, pp. 685-700 (2009). Fang, Z. Q., and H. J. Huang, "Effects of Salinity and Humic Acid on Di-n-Butyl Phthalate Adsorption by Granular Activated Carbon," International Conference on Bioinformatics and Biomedical Engineering - ICBBE, Beijing, China (2010). Field, J. A., C. A. Johnson, and J. B. Rose, "What Is “Emerging”?," Environmental Science & Technology, Vol. 40, pp. 7105 (2006). Gehr, R. and J. G. Henry, "Removal of Extracellular Material Techniques and Pitfalls," Water Research, Vol. 17, No. 12, pp. 1743-1748 (1983). Gill, R. I. S. and T. M. Herrington, "The Flocculation of Kaolin Suspensions Using Polyethylenimine and Cationic Polyacrylamides of the Same Molar Mass But Different Charge Density," Colloids and Surfaces, Vol. 28, pp. 41-52 (1987). Hassebrauck, M. and G. Ermel, "Two Examples of Thermal Drying of Sewage Sludge," Water Science and Technology, Vol. 33, No. 12, pp. 235-242 (1996). Hogan, F., S. Mormede, P. Clark, and M. Crane, "Ultrasonic Sludge Treatment for Enhanced Anaerobic Digestion," Water Science and Technology, Vol. 50, No. 9, pp. 25-32 (2004). Hotelling, H., "Analysis of a Complex of Statistical Variables into Principal Components," Educational Psychology, Vol. 24, No. 6, pp. 417-441 (1933). Kondoh, S. and M. Hiraoka, "Commercialization of Pressurized Electroosmotic Dehydrator (PED)," Water Science and Technology, Vol. 22, No. 12, pp. 259-268 (1990). Kovalick, W. W., "Innovative Ground-Water Remediation Technologies: Publications and Conference Proceedings 1990-1996," U.S. Environmental Protection Agency Technology Innovation Office, Washington, D.C., U.S.A. (1996). Krishnamurthy, S. and T. Viraraghavan, "Chemical Conditioning for Dewatering Municipal Wastewater Sludges," Energy Sources, Vol. 27, Nos.1-2, pp. 113-122 (2005). Lafuma, F., T. K. Wang, G. Durand, and R. Andebert, "Adsorption and Flocculation Behavior for System of Copolymers and Particles of Opposite Charge," Colloids and Surfaces, Vol. 31, pp. 255-257 (1988). Langford, K. H. and J. N. Lester, "Endocrine Disrupters and Sludge Treatment Processes," CRC Press LLC and IWA Publishing, London, U.K. (2003). Lee, J. E., "Thermal Dewatering (TDW) to Reduce the Water Content of Sludge," Drying Technology, Vol. 24, No. 2, pp. 225-232 (2006) Lee, C. H. and J. C. Liu, "Enhance Sludge Dewaterability by Dual Polyelectrolytes Conditioning," Water Research, Vol. 34, No. 18, pp. 4430-4436 (2000). Lee, D. J. and Y. H. Hsu, "Fast Freeze/Thaw Treatment on Activated Sludge: Floc Structure and Sludge Dewaterability," Environmental Science and Technology, Vol. 28, No. 8, pp. 1444-1449 (1994). Lee, J. E., J. K. Lee, and H. K. Choi, "Filter Press for Electrodewatering of Waterworks Sludge," Drying Technology, Vol. 25, No. 10, pp. 1649-1657 (2007). Lee, J. K., H. S. Shin, C. J. Park, C. G. Lee, J. E. Lee, and Y. W. Kim, "Performance Evaluation of Electrodewatering System for Sewage Sludges," Korean Journal of Chemical Engineering, Vol. 19, No, 1, pp. 41-45 (2002). Lertsirisopon, R., S. Soda, K. Sei, and M. Ike, "Abiotic Degradation of Four Phthalic Acid Esters in Aqueous Phase Under Natural Sunlight Irradiation," Journal of Environmental Sciences, Vol. 21, No. 3, pp. 285-290 (2009). Lockhart, N. C. and R. E. Stickland, "Dewatering Coal Washery Tailings Ponds by Electroosmosis," Powder Technology, Vol. 40, Nos. 1-3, pp. 215-221 (1984). Madsen, P. L., J. B. Thyme, K. Henriksen, P. Møldrup, and P. Roslev, "Kinetics of Di-(2-ethylhexyl) Phthalate Mineralization in Sludge-Amended Soil," Environmental Science & Technology, Vol. 33, No. 15, pp. 2601-2606 (1999). Mahmoud, A., A. Fernandez, T. M. Chituchi, and P. Arlabosse, "Thermally Assisted Mechanical Dewatering (TAMD) of Suspensions of Fine Particles: Analysis of the Influence of the Operating Conditions Using the Response Surface Methodology," Chemosphere, Vol. 72, No. 11, pp. 1765-1773 (2008). Mahmoud, A., J. Olivier, J. Vaxelaire, and A. F. A. Hoadley, "Electrical Field: A Historical Review of Its Application and Contributions in Wastewater Sludge Dewatering," Water Research, Vol. 44, No. 8, pp. 2381-2407 (2010). Mahmoud, A., J. Olivier, J. Vaxelaire and A. F. A. Hoadley, "Electro-Dewatering of Wastewater Sludge: Influence of the Operating Conditions and Their Interactions Effects," Water Research, Vol. 45, No. 9, pp. 2795-2810 (2011). Mahmoud, A., P. Arlabosse, and A. Fernandez, "Application of a Thermally Assisted Mechanical Dewatering Process to Biomass," Biomass and Bioenergy, Vol. 35, No. 1, pp. 288-297 (2011). Mahmoud, M. A. A., R. U. José, O. P. Raúl, and D. M. D. José, "Environmental Impact of Phthalic Acid Esters and Their Removal from Water and Sediments By Different Technologies-A Review," Journal of Environmental Management, Vol. 109, No. 30, pp. 164-178 (2012). Mihoubi, D., "Mechanical and Thermal Dewatering of Residual Sludge," Desalination, Vol. 167, No. 15, pp. 135-139 (2004). Miller, S. A., C. S. Sacchetta, and C. J. Veal, "Electrodewatering of Waste Activated Sewage Sludge," 17th AWWA Federal Convention, Melbourne, Australia (1997). Mok, C. K., "Design and Modelling of Electroosmotic Dewatering," Ph.D. Thesis, Newcastle University, Newcastle upon Tyne, England (2006). Moody, G. M., "Pre-Treatment Chemicals," Filtration and Separation, Vol. 32, No. 4, pp. 329-336 (1995). Mujumdar, A. S. and H. Yoshida, "Electro-Osmotic Dewatering (EOD) of Bio-Materials," Springer, New York, U.S.A. (2009). Newman, J., and E. K. Thomas-Alyea, "Electrochemical Systems," Prentice-Hall, New Jersey, U.S.A. (1972). Neyens, E., J. Baeyens, R. Dewil, and B. D. Heyder, "Advanced Sludge Treatment Affects Extracellular Polymeric Substances to Improve Activated Sludge Dewatering," Journal of Hazardous Materials, Vol. 106, Nos. 2-3, pp. 83-92 (2004). OVIVO, "CINETIKⓇ Linear Electro-Dewatering," http://www.ovivowater.com/en/CINETIKLinearElectroDewatering, Quebéc, Canada (2013). Parker, P. J., A. G. Collins, and J. P. Dempsey, "Effects of Freezing Rate, Solids Content, and Curing Time on Freeze/Thaw Conditioning of Water Treatment Residuals," Environmental Science and Technology, Vol. 32, No. 3, pp. 383-387 (1998). Pearson, K., "On Lines and Planes of Closest Fit to Systems of Points in Spaces," Philosophical Magazine, Vol. 2, No. 11, pp. 559-572 (1901). Peeters, B., "Mechanical Dewatering and Thermal Drying of Sludge in a Single Apparatus," Drying Technology, Vol. 28, No. 4, pp. 454-459 (2010). Petrović, M., S. Gonzalez and D. Barcelό, "Analysis and Removal of Emerging Contaminants in Wastewater and Drinking Water," TrAC Trends in Analytical Chemistry, Vol. 22, No. 10, pp.685-696 (2003). Phadke, M. S., "Quality Engineering Using Robust Design," Prentice Hall, Englewood Cliffs, New Jersey, U.S.A. (1989). Probstein, R. F. and R. E. Hicks, "Removal of Contaminants from Soils by Electric Fields," Science, Vol. 60, No. 23, pp. 498-503 (1993). Raats, M. H. M., A. J. G. van Diemen, J. Lavén, and H. N. Stein, "Full Scale Electrokinetic Dewatering of Waste Sludge," Colloids and Surfaces, Vol. 210, Nos. 2-3, pp. 231-241 (2002). Reedy, P. B. S., K. Nishia and A. S. Babu, "Unification of Robust Design and Goal Programming for Multiresponse Optimization-A Case Study," Quality and Reliability Engineering International, Vol. 13, No. 6, pp. 371-383 (1997). Richardson, S. D., "Environmental Mass Spectrometry: Emerging Contaminants and Current Issues," Analytical Chemistry, Vol. 84, No. 2, pp. 747-778 (2012). Richardson, S. D. and T. A. Ternes, "Water Analysis: Emerging Contaminants and Current Issues," Analytical Chemistry, Vol. 83, No. 12, pp. 4614-4648 (2011). Sanin, F. D., P. A. Vesilind, and C. J. Martel, "Pathogen Reduction Capabilities of Freeze/Thaw Sludge Conditioning," Water Science and Technology, Vol. 28, No. 11, pp. 2393-2398 (1994). Saveyn, H., G. Pauwels, R. Timmerman, and P. van der Meeren, "Effect of Polyelectrolyte Conditioning on the Enhanced Dewatering of Activated Sludge by Application of an Electric Field During the Expression Phase," Water Research, Vol. 39, No. 13, pp. 3012-3020 (2005). Saveyn, H., P. van der Meeren, G. Pauwels, and R. Timmerman, "Bench- and Pilot-Scale Sludge Electrodewatering in a Diaphragm Filter Press," Water Science and Technology, Vol. 54, No. 9, pp. 53-60 (2006). Smith, J. K. and P. A. Vesilind, "Dilatometric Measurement of Bound Water in Waste-Water Sludge," Water Research, Vol. 29, No. 12, pp. 2621-2626 (1995). Smollen, M. and A. Kafaar, "Electroosmotically Enhanced Sludge Dewatering-Pilot-Plant Study," Water Science and Technology, Vol. 30, No. 8, pp. 159-168 (1994). Smythe, M. C. and R. J. Wakeman, "The Use of Acoustic Fields as a Filtration and Dewatering Aid," Ultrasonics, Vol. 38, Nos. 1-8, pp. 657-661 (2000). Snyman, H. G., P. Forssman, A. Kafaar, and M. Smollen, "The Feasibility of Electro-Osmotic Belt Filter Dewatering Technology at Pilot Scale," Water Science and Technology, Vol. 41, No. 8, pp. 137-144 (2000). Spinosa, L. and P. A. Vesilind, "Sludge into Biosolids. Processing, Disposal and Utilization," IWA Publishing, Alliance House, London, U.K. (2001). Sui, Q., J. Huang, S. Deng, W. Chen, and G. Yu, "Suasonal Variation in the Occurrence and Removal of Pharmaceuticals and Personal Care Products in Different Biological Wastewater Treatment Processes," Environmental Science and Technology, Vol. 45, No. 8, pp. 3341-3348 (2011). Tong, T. I. and C. T. Su, "Optimizing Multi-Response Problems in the Taguchi Method by Fuzzy Multiple Attribute Decision Making," Quality and Reliability Engineering International, Vol. 13, No. 1, pp. 25-34 (1997). Tuan, P. A., V. Jurate, and S. Mika, "Electro-Dewatering of Sludge Under Pressure and Non-Pressure Conditions," Environmental Technology, Vol. 29, No. 10, pp. 1075-1084 (2008). Tuan, P. A., and S. Mika, "Migration of Ions and Organic Matter During Electro-Dewatering of Anaerobic Sludge," Journal of Hazardous Materials, Vol. 173, No. 1-3, pp. 54-61 ( 2010). Tuan, P. A., S. Mika, and I. Pirjo, "Sewage Sludge Electro-Dewatering Treatment-A Review," Drying Technology, Vol. 30, No. 7, pp. 791-706 (2012). Tyagi, V. K. and S. L. Lo, "Microwave Irradiation: A Sustainable Way for Sludge Treatment and Resource Recovery," Renewable and Sustainable Energy Reviews, Vol. 18, pp. 288-305 (2013). U.S. E.P.A., "Endocrine Disruptor Screening Program (EDSP)," http://www.epa.gov/endo/pubs/edspoverview/whatare.htm, U.S.A. (2013). Venkata-Mohan, S., S. Shalaja, M. Rama Krishna, and P. N. Sarma, "Adsorptive Removal of Phthalate Ester (Di-ethyl Phthalate) from Aqueous Phase by Carbon: A Kinetic Study," Journal of Hazardous Materials, Vol. 146, Nos. 1-2, pp. 278-282 (2007). Vesilind, P. A., "The Role of Water in Sludge Dewatering," Water Environment Research, Vol. 66, No. 1, pp. 4-11 (1994). Vesilind, P. A. and C. C. Hsu, "Limits of Sludge Dewaterability," Water Science and Technology, Vol. 36, No. 11, pp. 87-91 (1997). Vijh, A. K., "Electrochemical Aspects of Electroosmotic Dewatering of Clay Suspensions," Drying Technology, Vol. 13, Nos. 1-2, pp. 215-224 (1995). Wakeman, R. J., "Separation Technologies for Sludge Dewatering," Journal of Hazardous Materials, Vol. 144, No. 3, pp. 614-619 (2007). Wall, S., "The History of Electrokinetic Phenomena," Current Opinion in Colloid & Interface Science, Vol. 15, No. 3, pp. 119-124 (2010). Wheeler, R. A., A. F. A. Hoadley, and S. A. Clayton, "Modelling the Mechanical Thermal Expression Behaviour of Lignite," Fuel, Vol. 88, No. 9, pp. 1741-1751 (2009). Whipps, A., "A Review of the Dangerous and Explosive Atmosphere Regulations in Relation to the Water Industry," Water and Environment, Vol. 18, No. 2, pp, 118-120 (2004). Winter, P., N. Jones, M. Asaadi, and L. Bowman, "The Odour of Digested Sewage Sludge Determination and Its Abatement by Air Stripping," Water Science and Technology, Vol. 49, No. 9, pp. 185-192 (2004). Wu, D., Q. Mahmood, L. Wu, and P. Zheng, "Activated Sludge-Mediated Biodegradation of Dimethyl Phthalate Under Fermentative Conditions," Journal of Environmental Sciences, Vol. 20, No. 8, pp. 922-926 (2008). Wu, M., N. Liu, G. Xu, J. Ma, L. Tang, L. Wang, and H. Fu, "Kinetics and Mechanisms Studies on Dimethyl Phthalate Degradation in Aqueous Solutions by Pulse Radiolysis and Electron Beam Radiolysis," Radiation Physics and Chemistry, Vol. 80, No. 3, pp. 420-425 (2011). Xia, B., D. W. Sun, L. T. Li, X. Q. Li, and E. Tatsumi, "Effect of Electro-Osmotic Dewatering on the Quality of Tofu Sheet," Drying Technology, Vol. 21, No. 1, pp. 129-145 (2003). Yang, G. C. C. and S. L. Lin, "Removal of Lead from a Silt Loam Soil by Electrokinetic Remediation," Journal of Hazardous Materials, Vol. 58, Nos. 1-3, pp. 285-299 (1998). Yang, L., G. Nakhla, and A. Bassi, "Electro-Kinetic Dewatering of Oily Sludges," Journal of Hazardous Materials, Vol. 125, Nos. 1-3, pp. 130-140 (2005). Yang, G. C. C., M. C. Chen, and C. F. Yeh, "Dewatering of a Biological Industrial Sludge by Electrokinetics-Assisted Filter Press," Separation and Purification Technology, Vol. 79, No. 2, pp. 177-182 (2011). Yu, Q., H. Lei, X. Feng, Z. Li, and Z. Wu, "Influence of Microwave Irradiation on Sludge Dewaterability," Chemical Engineering Journal, Vol. 155, Nos. 1-2, pp. 88-93 (2009). Zhang, C. and Y. Wang, "Removal of Dissolved Organic Matter and Phthalic Acid Esters from Landfill Leachate Through a Complexation-Flocculation Process," Waste Management, Vol. 29, No. 1, pp. 110-116 (2009). Zhou, J., Z. Liu, P. She, and F. Ding, "Water Removal from Sludge in a Horizontal Electric Field," Drying Technology, Vol. 19, Nos. 3-4, pp. 627-638 (2001). 中文部分: 中國污水處理工程網,“選礦廢水處理”, http://www.dowater.com/jishu/2011-02-15/42233.html,中國 (2011)。 元錩工業股份有限公司,“污泥脫水設備”,http://www.ycicl.com/,臺灣 (2013)。 內政部營建署下水道工程處,“全國污水下水道用戶接管普及率及整體污水處理率統計表”,臺灣 (2013)。 白賜清,“工業實驗計劃法”,中華民國品質管制學會,臺北市 (1993)。 臺灣水科技網,“有機高分子絮凝劑”, http://www.waterinfor.com/mediawiki/index.php/有機高分子絮凝劑,臺灣 (2013)。 朱敬平,“污泥膠羽結構、脫水性、水份分布與熱分解特性之研究”,碩士學位論文,國立臺灣大學化學工程學研究所,臺北市 (1999)。 朱敬平,“污泥中間處理技術(污泥濃縮、調理、脫水)”,廢水污泥減量減容技術講習會,台北市(2004)。 朱敬平、李篤中,“污泥處置(III):污泥後處理”,臺大工程學刊,第83期,第59-81頁 (2001)。 朱敬平、李篤中,“污泥處置(IV):策略與永續利用”,臺大工程學刊,第84期,第49-76頁 (2002)。 行政院衛生署食品藥物管理局,“藥物食品安全週報”,第305期,第1-3頁 (2011)。 行政院環境保護署,“宣導手冊-認識生活環境中毒性物質”,http://www.epa.gov.tw/ch/aioshow.aspx?busin=324&path=15618&guid=31160a23-6142-4162-87ac-5b77c0f60f2e&lang=zh-tw,台北市 (2012)。 行政院環保署環境檢驗所,“一般廢棄物(垃圾)水分測定方法-間接測定法”,NIEA R213.21C,臺北市 (2009)。 行政院環保署環境檢驗所,“水中氫離子濃度指數(pH值)測定方法-電極法”,NIEA W424.52A,臺北市 (2008)。 行政院環保署環境檢驗所,“水中總溶解固體及懸浮固體檢測方法-103~105℃乾燥”,NIEA W210.57A,臺北市 (2006)。 行政院環保署環境檢驗所,“污泥廢棄物中總固體、固定性及揮發性固體含量檢測方法”,NIEA R212.01C,臺北市 (2002)。 吳明諺,“奈米級Fe3O4及[Fe3O4]MgO懸浮液注入結合電動力法整治飽和土壤中NO3-及Cr6+之反應行為探討”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2010)。 李輝煌,“田口方法:品質設計的原理與實務”,高立圖書有限公司,台北市 (2000)。 周宗享,“電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化去除水中環境荷爾蒙及藥物”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2012)。 林正芳、林郁真、余宗賢,“新興污染物(抗生素與止痛藥)於特定污染源環境之流佈”,持久性有機污染物(含戴奧辛)研討會,台北市 (2008)。 洪源駿,“電動力法-Fenton法-催化性鐵粉牆組合技術現地模場整治受含氯有機物污染之場址”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2002)。 陳旻聰,“利用電動力輔助板框式壓濾脫水系統處理不同生物污泥之研究”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2012)。 張信堃、莊順興、李岳翰、黃春財,“微生物燃料電池產電效能之研究-以活性污泥水解產物為基質”,下水道與水環境再生研討會,台北市 (2011)。 張彥文,“污水變淨水,永續水再生”,工業技術與資訊月刊,第212期,http://edm.itri.org.tw/enews/epaper/9806/a01.htm (2009)。 黃臣鴻,“PC/ABS合膠機械材質之射出成型條件最佳化”,博士學位論文,國立中央大學機械工程研究所,中壢市(2003)。 楊玉如,“應用主成份分析方法於多重品質製程最佳化之研究”,碩士學位論文,國立交通大學工業工程研究所,新竹市 (1995)。 楊士弘,“利用TMCS表面改質管狀陶瓷膜結合同步電混凝/電過濾程序去除水中之砷及過氯酸鹽”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2011)。 楊金鐘,“具有電極之濾板組及使用該濾板組之壓濾機”,中華民國發明專利,專利號碼: I392538 (2013)。 楊金鐘、顏嘉亨,“利用管狀碳質/陶瓷複合膜結合同步電混凝/電過濾程序去除生活污水中之乙醯氨酚和紅黴素研究”,中華民國環境工程學會2010廢水處理技術研討會論文集光碟,屏東縣 (2010)。 楊金鐘、陳旻聰、蔡佳伶,“電動力輔助板框式壓濾機提升都市下水生物污泥脫水之研究”,中華民國環境工程學會2011廢水處理技術研討會論文集光碟,臺南市 (2011)。 楊金鐘、張日養、李長盈,“使用具有電極之濾布組的壓濾機及其具有電極之濾布組”,中華民國發明專利,專利號碼: I392636 (2013)。 經濟部工業局,“工業廢棄物再利用審查作業管制”,臺北市 (2010) 臺灣電力公司,電價表”,http://www.taipower.com.tw/content/q_service/images/main_3_6_3.pdf,臺北市 (2012)。 葉峮甫,“電動力法輔助奈米Fe3O4/S2O82-程序整治受TCE及1,2-DCA污染土壤”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2010)。 歐陽嶠暉,“下水道工程學”,長松文化興業股份有限公司,臺北市 (2005)。 顏嘉亨,“多管式TiO2/Al2O3複合膜同步電混凝/電過濾處理光電產業廢水之效能評估”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2008)。 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |