Responsive image
博碩士論文 etd-0805122-153838 詳細資訊
Title page for etd-0805122-153838
論文名稱
Title
極紫外光光罩傳載盒研究:以極紫外光薄膜應力特性和濕度轉換的流場特性為例
Investigation of Extreme Ultra Violet (EUV) Inner Pod: Mechanical Activity of EUV Pellicle and Flow Characteristic for Humidity Exchange
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-06-28
繳交日期
Date of Submission
2022-09-05
關鍵字
Keywords
微影製程、光罩盒、薄膜、形變量、濕度置換
Lithography, EUV Pod, Pellicle, Deflection, Humidity exchange
統計
Statistics
本論文已被瀏覽 144 次,被下載 0
The thesis/dissertation has been browsed 144 times, has been downloaded 0 times.
中文摘要
近年來隨著電子技術產品的功能越來越強大,複雜性比以往任何時候都更加强大和精確,半導體行業被迫將晶圓的每個單位面積中可以塞入更多的電晶體。而黃光微影技術(Lithography) 是電晶體製造過程中實現小型化的關鍵技術。 積體電路線寬線距越做越小,環境中污染影響則越變越大,例如:水蒸氣、微粒 (Particle)等,皆會影響晶圓良率表現。當光罩表面掉落污染物,影響良率變為嚴重。為了大幅降低光罩受到外部環境的污染如微粒、揮發性氣體進而影響曝光成像,光罩薄膜(Pellicle)應運而生。
然而薄膜型變嚴重影響曝光成像結果,本篇研究推導出一個新的薄膜形變量的計算方程式Improved Timoshenko equation。此方程式可以考慮不同長寬比、不一樣橫向和縱向應變比值,亦或是考慮剪應力和軸向力比值。將此方程式Improved Timoshenko equation和原先的Timoshenko equation比較,其結果薄膜變形量有很高的一致性跟重疊性。之後納入不同組數Aspect ratio (n)、殘留應力,並加入7種薄膜候選材料比較Timoshenko equation和Improved Timoshenko equation兩種方程式。
最後本研究針對實際會造成薄膜形變狀況以及有效降低空氣污染分子而設計兩種實驗:流場實驗、濕度置換實驗。當光罩在移動傳送時,其速度場造成些許壓力差。以及溫濕度置換試驗明確表示,流量愈高,相對濕度下降速率愈快。
Abstract
Recently, electronic technology products have become more powerful, more complex and more precise than ever. The semiconductor industry has been forced to put more transistors into each unit area of a wafer. Lithography is a key technology to achieve miniaturization in the manufacturing process. The smaller the line width and line spacing of the integrated circuit, the greater the impact of pollution in the environment, such as water vapor, particles, etc., will affect the wafer yield performance. When contaminants fall off the mask surface, the impact of yield becomes serious. To greatly reduce the contamination of the photomask by the external environment, such as particles and volatile gases, which affect the exposure and imaging, the photomask film (Pellicle) came into being.
However, the pellicle deformation seriously affects the exposure imaging results. In this study, a new improved Timoshenko equation for the calculation of pellicle deformation is deduced. This equation can consider different aspect ratios, different lateral and longitudinal strain ratios, or the ratios of shear stress to axis stress. Comparing the improved Timoshenko equation with the original Timoshenko equation, the results show that the film deformations have high consistency and overlap. Then, different groups of Aspect ratio (n) and residual stress were considered, and 7 kinds of film materials were added to compare the Timoshenko equation and the Improved Timoshenko equation.
Finally, this study designed two kinds of experiments for the actual film deformation and the effective reduction of air pollution molecules: flow field experiment and humidity replacement experiment. When the reticle moves and teleports, its velocity field creates a slight pressure difference. And the temperature and humidity exchanging test clearly shows that the higher the flow rate, the faster the relative humidity decline rate.
目次 Table of Contents
目 錄
論文審定書……………………………………………………………………………………i
誌謝……………………………………………………………………………………………ii
中文摘要………………………………………………………………………………………iii
英文摘要………………………………………………………………………………………iv
目錄……………………………………………………………………………………………v
圖目錄…………………………………………………………………………………………vii
表目錄…………………………………………………………………………………xii
符號目錄……………………………………………………………………………………xiii
第一章 研究背景及動機 ………………………………………………………………1
1.1 摩爾定律………………………………………………………………………………1
1.2 黃光微影………………………………………………………………………………1
1.3 極紫外光曝光機…………………………………………………………………3
1.4 水氣、污染物、光罩盒………………………………………………………………4
1.5 光罩薄膜………………………………………………………………………………5
1.6 薄膜形變………………………………………………………………………………6
第二章 薄膜形變計算方法……………………………………………………………7
2.1 Improved Timoshenko equation…………………………………………………7
2.2 Improved Timoshenko equation 與Timoshenko equation計算結果比較…………16
2.2.1在不同長寬比 (n=a/b) 與不同殘留應力下薄膜型變量與壓力的比較……16
2.2.1.1 在長寬比 (n=a/b) =0.1時不同殘留應力下薄膜型變量與壓力的比較…17
2.2.1.2 長寬比 (n=a/b) =1 時不同殘留應力下薄膜型變量與壓力的比較………19
2.2.1.3 長寬比 (n=a/b) =10 時不同殘留應力下薄膜型變量與壓力的比較………22
2.2.2 加入不同薄膜材料特性後薄膜型變量與壓力的比較………………………26
2.2.3 加入不同薄膜材料特性後固定邊界條件求得殘留應力…………………27
2.3 Improved Timoshenko Equation延伸討論………………………………………29
2.3.1 不同長寬比下的薄膜變形量比較…………………………………………29
2.3.2 不同殘留應力下的薄膜變形量比較…………………………………………32
2.3.3 不同薄膜厚度下的薄膜變形量比較…………………………………………34
2.3.4 利用Improved Timoshenko Equation 反推壓力………………………………37
第三章 實驗設計與方法…………………………………………………………………39
3.1 實驗目的………………………………………………………………………………39
3.2 EUV光罩盒(EUV POD) 介紹 …………………………………………………………39
3.3 實驗所用之抽氣及觀察量測儀器……………………………………………………39
3.3.1 氮氣瓶………………………………………………………………………39
3.3.2 調壓閥………………………………………………………………………41
3.3.3 溫濕度感測計…………………………………………………………………41
3.3.4 高速攝影機……………………………………………………………………………41
3.4 實驗規劃………………………………………………………………………………42
3.5 實驗步驟 ………………………………………………………………………………43
3.5.1 流場實驗………………………………………………………………………43
3.5.2 濕度置換實驗 …………………………………………………………………43
第四章 數值模擬方法 …………………………………………………………………………45
4.1 基本假設 ………………………………………………………………………………45
4.2 邊界條件………………………………………………………………………………45
4.2.1 模擬幾何形狀 …………………………………………………………………45
4.2.2 網格 ……………………………………………………………………………47
第五章 結果分析與比較 ………………………………………………………………………49
5.1 模擬實驗結果分析 ……………………………………………………………………49
5.1.1 不同流量下之EIP開蓋速度場………………………………………………………49
5.1.2不同流量下之水氣去除流場狀態…………………………………………………51
5.2.實際實驗結果分析 ………………………………………………………………………53
5.2.1 不同流量下之EIP開蓋速度場……………………………………………………53
5.2.2不同流量下之水氣去除流場狀態……………………………………………………54
5.3 模擬與實驗結果比較…………………………………………………………………58
第六章 結論與建議……………………………………………………………………………61
第七章 未來研究方向…………………………………………………………………………62
第八章 參考文獻……………………………………………………………………………63
第九章 附錄……………………………………………………………………………………65
第十章 論文原創性報告……………………………………………………………………83
參考文獻 References
[1] R.R. Schaller, Moore's law: past, present and future, IEEE spectrum 34(6) (1997) 52-59.
[2] B. Hoefflinger, ITRS: The international technology roadmap for semiconductors, Chips 2020, Springer2011, pp. 161-174.
[3] H.M. Berger, A new approach to the analysis of large deflections of plates, (1955).
[4] V. Ibeabuchi, O. Ibearugbulem, C. Ezeah, O. Ugwu, Elastic buckling analysis of uniaxially compressed CCCC stiffened isotropic plates, International Journal of Applied Mechanics and Engineering 25(4) (2020).
[5] XFastest News. https://news.xfastest.com/tsmc/75698/tsmc-3%c2%b5m-5nm/.
[6] 施敏, 半導體製程概論, 2006.
[7] CTIMES. https://www.ctimes.com.tw/DispArt-tw.asp?k=&o=0408041719BY.
[8] Y. Kobayashi, S. Kobayashi, K. Tokunaga, K. Kato, T. Minami, Particle characteristics of 300-mm minienvironment (FOUP and LPU), IEEE transactions on semiconductor manufacturing 13(3) (2000) 259-263.
[9] J. Barker, S. Miner, W. Zhao, J.S. Kim, J. Moore, E. Ramanathan, S. Case, S. Waite, Defectivity and yield impact from the AMC inside the FOUP in advanced technologies, IEEE Transactions on Semiconductor Manufacturing 30(4) (2017) 434-439.
[10] Y. Ono, K. Kohmura, A. Okubo, D. Taneichi, H. Ishikawa, T. Biyajima, Development of closed-type EUV pellicle, Photomask Japan 2018: XXV Symposium on Photomask and Next-Generation Lithography Mask Technology, SPIE, 2018, pp. 97-102.
[11] W. Den, H. Bai, Y. Kang, Organic airborne molecular contamination in semiconductor fabrication clean rooms: a review, Journal of The Electrochemical Society 153(2) (2006) G149.
[12] T. Lin, B.-R. Fu, S.-C. Hu, Y.-H. Tang, Moisture prevention in a pre-purged front-opening unified pod (FOUP) during door opening in a mini-environment, IEEE Transactions on Semiconductor Manufacturing 31(1) (2018) 108-115.
[13] S.-C. Hu, Z.-W. Li, T. Lin, B.-R. Fu, Humidity control for front opening unified pod after opening its door in a mini-environment, Applied Sciences 8(7) (2018) 1149.
[14] M.G. Allen, Measurement of mechanical properties and adhesion of thin polyimide films, Massachusetts Institute of Technology, 1986.
[15] I.-S. Kim, M. Yeung, E. Barouch, H.-K. Oh, Impact of a deformed extreme ultraviolet pellicle in terms of the critical dimension uniformity, Journal of Micro/Nanolithography, MEMS, and MOEMS 15(2) (2016) 021003.
[16] S. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells, McGraw-hill New York1959.
[17] C.-T. Kuo, K. Hung, C. Lee, C.-H. Chuang, B. Chiu, Investigation of EUV pellicle mechanical stress within EUV pod, Photomask Japan 2021: XXVII Symposium on Photomask and Next-Generation Lithography Mask Technology, SPIE, 2021, pp. 138-146.
[18] B.S. Kasprowicz, P.D. Buck, H.-J. Lee, E.-S. Park, I.-S. Kim, H.-K. Oh, Mechanical stress induced by external forces in the extreme ultraviolet pellicle, Photomask Technology 2016, 2016.
[19] C.-T. Kuo, C. Lee, J. Wu, C.-H. Chuang, B. Chiu, In-situ and real-time investigation of EUV pellicle mechanical stress within EUV inner pod, Extreme Ultraviolet Lithography 2020, SPIE, 2020, p. 115170B.
[20] O. Ibearugbulem, J. Ezeh, L. Ettu, Energy methods in theory of rectangular plates (Use of Polynomial Shape Functions), Liu House of Excellence Venture–Imo State, Nigeria (2014).
[21] O. Ibearugbulem, L. Ettu, J. Ezeh, Direct integration and work principle as new approach in bending analyses of isotropic rectangular plates, The international journal of engineering and science 2(3) (2013) 28-36.
[22] K. Njoku, J. Ezeh, O. Ibearugbulem, L. Ettu, L. Anyaogu, Free vibration analysis of thin rectangular isotropic CCCC plate using Taylor series formulated shape function in Galerkin's method, Academic Research International 4(4) (2013) 126.
[23] O. Tabata, K. Kawahata, S. Sugiyama, I. Igarashi, MECHANICAL PROPERTY MEASUREMENTS OF THIN-FILMS USING LOAD DEFLECTION OF COMPOSITE RECTANGULAR MEMBRANES, Sensors and Actuators 20(1-2) (1989) 135-141.
[24] O. Tabata, K. Kawahata, S. Sugiyama, I. Igarashi, Mechanical property measurements of thin films using load-deflection of composite rectangular membranes, Sensors and actuators 20(1-2) (1989) 135-141.
[25] H.-J. Lee, E.-S. Park, I.-S. Kim, H.-K. Oh, Mechanical stress induced by external forces in the extreme ultraviolet pellicle, Photomask Technology 2016, SPIE, 2016, pp. 188-195.
[26] C. Imrak, I. Gerdemeli, An exact solution for the deflection of a clamped rectangular plate under uniform load, Applied mathematical sciences 1(43) (2007) 2129-2137.
[27] R.L. Taylor, S. Govindjee, Solution of clamped rectangular plate problems, Communications in numerical methods in engineering 20(10) (2004) 757-765.
[28] T.H. Evans, Tables of moments and deflections for a rectangular plate fixed on all edges and carrying a uniformly distributed load, (1939).
[29] I. Wojtaszak, The calculation of maximum deflection, moment, and shear for uniformly loaded rectangular plate with clamped edges, (1937).
[30] E. Ventsel, T. Krauthammer, E. Carrera, Thin plates and shells: theory, analysis, and applications, Appl. Mech. Rev. 55(4) (2002) B72-B73.
[31] D. MaierSchneider, J. Maibach, E. Obermeier, A new analytical solution for the load-deflection of square membranes, Journal of Microelectromechanical Systems 4(4) (1995) 238-241.
[32] J.Y. Pan, P. Lin, F. Maseeh, S.D. Senturia, Verification of FEM analysis of load-deflection methods for measuring mechanical properties of thin films, IEEE 4th technical digest on solid-state sensor and actuator workshop, IEEE, 1990, pp. 70-73.
[33] E.-S. Park, Z.H. Shamsi, J.-W. Kim, D.-G. Kim, J.-G. Park, J.-H. Ahn, H.-K. Oh, Mechanical deflection of a free-standing pellicle for extreme ultraviolet lithography, Microelectronic Engineering 143 (2015) 81-85.
[34] R. Stewart, J. Kim, E. Kim, R. White, R. Muller, Young's modulus and residual stress of LPCVD silicon-rich silicon nitride determined from membrane deflection, Sensors and Materials 2(5) (1991) 285-298.
[35] E. Bromley, J. Randall, D. Flanders, R. Mountain, A technique for the determination of stress in thin films, Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena 1(4) (1983) 1364-1366.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-09-05
校外 Off-campus:開放下載的時間 available 2025-09-05

您的 IP(校外) 位址是 3.129.209.87
現在時間是 2025-04-27
論文校外開放下載的時間是 2025-09-05

Your IP address is 3.129.209.87
The current date is 2025-04-27
This thesis will be available to you on 2025-09-05.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2025-09-05

QR Code