Responsive image
博碩士論文 etd-0806121-111147 詳細資訊
Title page for etd-0806121-111147
論文名稱
Title
製備石墨烯量子點/銅之複合材料混合生質柴油降低柴油引擎排放污染之研究
Exhaust emission reduction of biodiesel fuel by nanocomposite copper graphene quantum Dots
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
156
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2021-07-27
繳交日期
Date of Submission
2021-09-06
關鍵字
Keywords
生質柴油、石墨烯量子點、傳統污染物、PM2.5、重金屬
Biodiesel, Graphene quantum dots, Traditional pollutants, PM2.5, Heavy metals
統計
Statistics
本論文已被瀏覽 118 次,被下載 0
The thesis/dissertation has been browsed 118 times, has been downloaded 0 times.
中文摘要
本研究欲透過奈米粒子之高表面活性及金屬之高傳熱性提高引擎燃燒效率以達到降低污染排放之成效。利用直接加熱法製備石墨烯量子點,再將石墨烯量子點做為還原劑透過化學還原法製備石墨烯量子點/銅之複合材料,再與不同配比之生質柴油及柴油做為混合燃料,計算柴油引擎之制動單位燃料消耗率(BSFC)及制動熱效率(BTE),並探討其對柴油引擎排放尾氣之細懸浮微粒(PM2.5)、傳統空氣污染物(CO、HC、NOx、SO2)及重金屬之排放特性差異。
研究成果顯示,本研究製備之石墨烯量子點/銅之複合材料其碳與銅之比約為3:1且其富含氧,而石墨烯量子點/銅之複合材料添加量與引擎排放污染減量呈正相關,石墨烯量子點/銅之複合材料添加濃度越高,更能減少污染排放。當添加量為100 mg/L時,與無添加石墨烯量子點/銅之複合材料相比,不同混合燃料之BSFC可降低約14.1-19.6%,而BTE可提升約16.9-23.8%;PM2.5、CO、SO2及HC之削減率分別為36.9-39.4%、32.5-37.9%、14.0-21.1%及41.9-58.3%;NOx因燃燒效率提升使燃燒溫度上升而導致其排放隨之增加,增加率約為10.7-18.5%;重金屬排放之削減率約為4.44-17.1%。
Abstract
In this study, we aim to improve the combustion efficiency of engines through the high surface activity of nanoparticles and the high thermal conductivity of metals to achieve the effect of reducing pollution emissions. The graphene quantum dots were prepared by directly pyrolyzing and then use graphene quantum dots as reducing agent to prepare graphene quantum dots/copper composite material through chemical reduction method, and then use different ratios of biodiesel and diesel as mixed fuel. Calculate the braking specific fuel consumption rate (BSFC) and braking thermal efficiency (BTE) of diesel engines and discuss their effects on the PM2.5, traditional air pollutants (CO, HC, NOx, SO2) and the difference in the emission characteristics of heavy metals. of diesel engine exhaust.
The research data shows that the carbon to copper ratio of the graphene quantum dot/copper composite material prepared in this study is about 3:1 and it is rich in oxygen, while the amount of the graphene quantum dot/copper composite material and engine emission pollution The reduction is positively correlated. The higher the concentration of the graphene quantum dot/copper composite material, the more pollutant emissions can be reduced. When the addition amount is 100 mg/L, compared with the composite without graphene quantum dots/copper, the BSFC of different fuel mixtures can be reduced by about 14.1-19.6%, and the BTE can be increased by about 16.9-23.8%; The reduction rates of PM2.5, CO, SO2 and HC are 36.9-39.4%, 32.5-37.9%, 14.0-21.1% and 41.9-58.3%; NOx emissions increase due to the increase in combustion efficiency and combustion temperature, the rate is about 10.7-18.5%; the reduction rate of heavy metal emissions is about 4.44-17.1%.
目次 Table of Contents
目錄
論文審定書 i
摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 viii
表目錄 xii
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1生質柴油 3
2-1-1 生質柴油簡介 3
2-1-2 生質柴油之生產技術 7
2-1-3 生質柴油之特性 10
2-2奈米燃料(Nanofuels) 12
2-2-1 奈米碳管(Carbon Nanotube) 14
2-3 石墨烯量子點(Graphene Quantum Dot, GQD) 15
2-3-1 石墨烯量子點之性質 15
2-3-2 石墨烯量子點之製備方法 16
2-3-3 石墨烯量子點之改質 23
2-4 柴油引擎(Diesel Engine) 24
2-4-1 柴油引擎運轉下之污染物排放特徵 24
2-5 細懸浮微粒(PM2.5)之排放特徵及危害特性 25
2-6 氮氧化物(NOx)之排放特徵及危害特性 27
2-7 硫氧化物(SOx)之排放特徵及危害特性 28
2-8 一氧化碳(CO)之排放特徵及危害特性 29
2-9 二氧化碳(CO2)之排放特徵及危害特性 30
2-10 碳氫化合物(HC)之排放特徵及危害特性 31
2-11 重金屬之排放特徵及危害特性 32
第三章 研究方法 34
3-1研究架構與流程 34
3-2 石墨烯量子點/銅之複合材料合成方法 37
3-2-1 石墨烯量子點之合成 37
3-2-2 石墨烯量子點/銅之複合材料之合成 38
3-3 實驗藥品與材料 38
3-4 柴油引擎 39
3-5 試驗之油品配比 41
3-6 柴油引擎排氣採樣系統 43
3-6-1 傳統空氣污染物採樣方法 43
3-6-2 細懸浮微粒採樣與分析 44
3-7 實驗儀器與設備 46
3-7-1 微波消化系統 46
3-7-2 感應耦合電漿發射光譜儀(ICP-OES) 47
3-7-3 紫外光-可見光光譜儀(UV-Vis) 48
3-7-4 傅立葉轉換紅外線光譜儀(Fourier-Transform Infrared spectroscopy, FTIR) 49
3-7-5 X光繞射分析儀(X-Ray Diffraction, XRD) 51
3-7-6 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 52
第四章 品質保證與品質控制 54
4-1 粒狀污染物採樣 54
4-2 傳統空氣污染物採樣 54
4-3 重金屬污染物分析 55
第五章 結果與討論 65
5-1 石墨烯量子點之材料鑑定 65
5-1-1 紫外光-可見光光譜儀(UV-Vis)分析 65
5-1-2 傅立葉轉換紅外線光譜儀(FTIR)分析 66
5-1-3 X光繞射分析儀(X-Ray Diffraction, XRD)分析 68
5-1-4穿透式電子顯微鏡(Transmission Electron Microscope, TEM)分析 69
5-2 石墨烯量子點/銅之複合材料之材料鑑定 70
5-2-1 傅立葉轉換紅外線光譜儀(FTIR)分析 70
5-2-2 X光繞射分析儀(X-Ray Diffraction, XRD)分析 71
5-3 添加石墨烯量子點/銅之複合材料燃料於引擎性能與排放特性影響 74
5-3-1 制動單位燃料消耗率(Brake specific fuel consumption, BSFC) 74
5-3-2 制動熱效率(Brake thermal efficiency, BTE) 78
5-3-3 細懸浮微粒(PM2.5)之排放特徵 82
5-3-4 一氧化碳(CO)之排放特徵 87
5-3-5 碳氫化合物(HC)之排放特徵 92
5-3-6 氮氧化物(NOx)之排放特徵 97
5-3-7 二氧化硫(SO2)之排放特徵 102
5-3-8 PM2.5上之金屬排放特徵 106
5-3-9 柴油引擎尾氣之重金屬排放之輸出/入質量比 110
5-4 成本效益評估 122
第六章 結論與建議 124
6-1結論 124
6-2建議 126
參考文獻 127

參考文獻 References
Aalam CS and Saravanan CG. Effects of nano metal oxide blended Mahua biodiesel on CRDI diesel engine. Ain Shams Engineering Journal 2017; 8: 689-696.
Agarwal AK and Dhar A. Karanja oil utilization in a direct-injection engine by preheating. Part 2: experimental investigations of engine durability and lubricating oil properties. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2010; 224: 85-97.
Ahirwar S, Mallick S, Bahadur D. Electrochemical Method To Prepare Graphene Quantum Dots and Graphene Oxide Quantum Dots. ACS Omega 2017; 2: 8343-8353.
Ajin CS, Sajith V. Synthesis of stable cerium zirconium oxide nanoparticle – Dieselsuspension and investigation of its effects on diesel properties andsmoke. Fuel 2016; 183: 155–163.
Akubude VC, Nwaigwe KN, Dintwa E. Production of biodiesel from microalgae via nanocatalyzed transesterification process: A review. Materials Science for Energy Technologies 2019; 2: 216-225.
Alenezi RA, Norkhizan AM, Mamat R, Erdiwansyah A, Najafi G, Mazian M. Investigating the contribution of carbon nanotubes and diesel-biodiesel blends to emission and combustion characteristics of diesel engine. Fuel 2021; 285: 119046.
Altaie MAH, Janius RB, Rashid U, Taufiq-Yap YH, Yunus R, Zakaria R, Adam NM. Performance and exhaust emission characteristics of direct-injection diesel engine fueled with enriched biodiesel. Energy Conversion and Management 2015; 106: 365-372.
Altmetric S, Prathima A. Emission analysis of the effect of dope nano-additives on biofuel in a diesel engine. Energy Sources, Part A L Recivery, Utilization, and Environment Effects 2016; 3702-3708.
Andreo-Martínez P, Ortiz-Martínez VM, García-Martínez N, Ríos AP, Hernández-Fernández FJ, Quesada-Medina J. Production of biodiesel under supercritical conditions: State of the art and bibliometric analysis. Applied Energy 2020; 264: 114753.
Arbab MI, Masjuki HH, Varman M, Kalam MA, Imtenan S, Sajjad H. Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel. Renewable and Sustainable Energy Reviews 2013; 22: 133-147.
Arden PC, Dockery DW. Health Effects of Fine Particulate Air Pollution: Lines that Connect. Journal of the Air & Waste Management Association 2006; 56: 709-742.
Ashraful AM, Masjuki HH, Kalam MA, Fattah IMR, Imtenan S, Shahir SA, Mobarak HM. Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: A review. Energy Conversion and Management 2014; 80: 202-228.
Asokan MA, Vijayan R, Prabu SS. A review on performance, emission and combustion characteristics of a diesel engine fuelled with various vegetable oil. Indian Journal of Chemical Technology 2018; 25: 225-234.
Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews 2012; 16: 2070-2093.
Atmanli A. Effects of a cetane improver on fuel properties and engine characteristics of a diesel engine fueled with the blends of diesel, hazelnut oil and higher carbon alcohol. Fuel 2016; 172: 209-217.
Badu D, Anand R. Effect of biodiesel-diesel-n-pentanol and biodiesel-diesel-n-hexanol blends on diesel engine emission and combustion characteristics. Energy 2017; 133: 761-776.
Banapurmath N, Narasimhalu T, Hunshyal A, Sankaran R, Rabinal MH, Ayachit N, Kittur R. Effect of Silver Nano-Particle Blended Biodiesel and Swirl on the Performance of Diesel Engine Combustion. International Journal of Sustainable and Green Energy 2014; 3: 150-157.
Bereczky TLA. Basic fuel properties of rapeseed oil-higher alcohols blends. Fuel 2011; 90: 803-810.
Betha R, Balasubramanian R. Emissions of particulate-bound elements from stationary diesel engine: Characterization and risk assessment. Atmospheric Environment 2011; 45: 5273-5281.
Bhuiya MMK, Rasul MG, Khan MMK, Ashwath N, Azad AK, Hazrat MA. Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics. Renewable and Sustainable Energy Reviews 2016; 55: 1129-1146.
Bolados HA, Pedram MY, Verdejo R. Chapter 7 - Thermal, electrical, and sensing properties of rubber nanocomposites. High-Performance Elastomeric Materials Reinforced by Nano-Carbons; 2020: 149-175.
Buyukkaya E. Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 2010; 89: 3099-3105.
Chen AF, Adzmi MA, Adam A, Othman MF, Kamaruzzaman MK, Mrgan AG. Combustion characteristics, engine performances and emissions of a diesel engine using nanoparticle-diesel fuel blends with aluminium oxide, carbon nanotubes and silicon oxide. Energy Conversion and Management 2018; 171: 461-477.
Chen H, Huang R, Huang HZ, Pan MZ, Teng WW. Potential improvement in particulate matter’s emissions reduction from diesel engine by addition of PODE and injection parameters. Applied Thermal Engineering 2019; 150: 591-604.
Chlopek Z, Darkowski A, Piaseczny L. The influence of metallo-organic fuel additives on CI engine emission. Polish Journal of Environmental Studies 2005; 14: 559-567.
Dhahad HA, Chaichan MT. The impact of adding nano-Al2O3 and nano-ZnO to Iraqi diesel fuel in terms of compression ignition engines' performance and emitted pollutants. Thermal Science and Engineering Progress 2020; 18: 100535.
Ding L, Zhao Z, Li D, Wang X, Chen J. An “off-on” fluorescent sensor for copper ion using graphene quantum dots based on oxidation of l-cysteine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019; 214: 320-325.
Dong YQ, Shao JW, Chen CQ, Li H, Wang RX, Chi YW, Lin XM, Chen GN. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 2012; 50: 4738-4743.
Emiroglu AO, Sen M. Combustion, performance and exhaust emission characterizations of a diesel engine operating with a ternary blend (alcohol-biodiesel-diesel fuel). Applied Thermal Engineering 2018; 133: 371-380.
Ettefaghi E, Rashidi A, Ghobadian B, Ebrahim GN, Khoshtaghaza MH, Delavarizadeh S, Mazlan M. Bio-nano emulsion fuel based on graphene quantum dot nanoparticles for reducing energy consumption and pollutants emission. Energy 2021; 218: 119551.
Farmani MR, Peyman H, Roshanfekr H. Blue luminescent graphene quantum dot conjugated cysteamine functionalized-gold nanoparticles (GQD-AuNPs) for sensing hazardous dye Erythrosine B. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020; 229: 117960.
Francis G, Edinger R, Becker K. A concept for simultaneous wasteland reclamation, fuel production, and socio‐economic development in degraded areas in India: Need, potential and perspectives of Jatropha plantations. Natural Resources Forum 2005; 29: 12-24.
Ghadikolaei MA, Wong PK, Cheung CS, Ning Z, Yung KF, Zhao J, Gali NK, Berenjestanaki AV. Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review. Renewable and Sustainable Energy Reviews 2021; 143: 110970.
Ghanbari M, Najafi G, Ghobadian B, Yusaf T, Carlucci AP, Kiani MKD. Performance and emission characteristics of a CI engine using nano particles additives in biodiesel-diesel blends and modeling with GP approach. Fuel 2017; 202: 699-716.
Gidwani B, Sahu V, Shukla SS, Pandey R, Joshi V, Jain VK, Vyas A. Quantum dots: Prospectives, toxicity, advances and applications. Journal of Drug Delivery Science and Technology 2021; 61: 102308.
Gonzalez CM, Gomez CD, Rojas NY, Acevedo H, Aristizabal BH. Relative impact of on-road vehicular and point-source industrial emissions of air pollutants in a medium-sized Andean city. Atmospheric Environment 2017; 152: 279-289.
Gude VG, Patil P, Martinez-Guerra E, Deng S, Nirmalakhandan N. Microwave energy potential for biodiesel production. Sustainable Chemical Processes 2013; 1: 5.
Gude VG, Patil P, Martinez-Gureea E, Deng S, Nirmalakhandan N. Microwave energy potential for biodiesel production. Sustainable Chemical Processes 2013; 1: 5.
Gumus S, Ozcan H, Ozbey M, Topaloglu B. Aluminum oxide and copper oxide nanodiesel fuel properties and usage in a compression ignition engine. Fuel 2016; 163: 80-87.
Hajjari M, Tabatabaei M, Aghbashlo M, Ghanavati H. A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. Renewable and Sustainable Energy Reviews 2017; 72: 445-464.
Heidari-Maleni A, Gundoshmian TM, Karimi B, Jahanbakhshi A, Ghobadian B. A novel fuel based on biocompatible nanoparticles and ethanol-biodiesel blends to improve diesel engines performance and reduce exhaust emissions. Fuel 2020; 276:118079.
Heydari-Maleney K, Taghizadeh-Alisaraei A, Ghobadian B, Abbaszadeh-Mayvan A. Analyzing and evaluation of carbon nanotubes additives to diesohol-B2 fuels on performance and emission of diesel engines. Fuel 2017; 196: 110-123.
Hoseini SS, Najafi G, Ghobadian B, Ebadi MT, Mamat R, Yusaf T. Performance and emission characteristics of a CI engine using graphene oxide (GO) nano-particles additives in biodiesel-diesel blends. Renewable Energy 2020; 145: 458-465.
Hosseini SH, Taghizadeh-Alisaraei A, Ghobadian B, Abbaszadeh-Mayvan A. Performance and emission characteristics of a CI engine fuelled with carbon nanotubes and diesel-biodiesel blends. Renewable Energy 2017; 111: 201-213.
Hosseinzadeh-Bandbafha H, Khalife E, Tabatabaei M, Aghbashlo M, Khanali M, Mohammadi P, Shojaei TR, Soltanian S. Effects of aqueous carbon nanoparticles as a novel nanoadditive in water-emulsified diesel/biodiesel blends on performance and emissions parameters of a diesel engine. Energy Conversion and Management 2019; 196: 1153-1166.
IEA, Global Energy Review: CO2 Emissions in 2020, IEA; 2021.
Ithnin AM, Yahya WJ, Ahmad MA, Ramlan NA, Kadir HA, Sidik NAC , Koga T. Emulsifier-free Water-in-Diesel emulsion fuel: Its stability behaviour, engine performance and exhaust emission. Fuel 2018; 215: 454-462.
Johansson L, Jalkanen JP, Kalli J, Kukkonen J. The evolution of shipping emissions and the costs of regulation changes in the northern EU area. Atmospheric Chemistry and Physics 2013; 13: 11375-11389.
Kafuku G, Mbarawa M. Biodiesel production from Croton megalocarpus oil and its process optimization. Fuel 2010; 89: 2556-2560.
Kalligeros S, Zannikos F, Strournas S, Lois E, Anastopoulos G, Teas CH, Sakellarppoulos F. An investigation of using biodiesel/matine diesel blends on the performance of a stationary diesel engine. Biomass and Bioenergy 2003; 24: 141-149.
Kannan GR, Karvembu R, Anand R. Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel. Applied Energy 2011; 88: 3694-3703.
Karagoz M, Uysal C, Agbulut U, Saridemir S. Exergetic and exergoeconomic analyses of a CI engine fueled with diesel-biodiesel blends containing various metal-oxide nanoparticles. Energy 2021; 214: 118830
Karmakar A, Karmakar S, Mukherjee S. Properties of various plants and animals feedstocks for biodiesel production. Bioresource Technology 2010; 101: 7201-7210.
Karthikeyan S, Elango A, Prathima A. An environmental effect of GSO methyl ester with ZnO additive fuelled marine engine. International Journal of Molecular Sciences 2014; 43: 564-570.
Kittelson D, Watts W, Arnold M. Review of diesel particulate matter sampling methods supplemental report # 2 aerosol dymamics, laboratory and on-road studies. Environmental Science 1998; 29: 575-588.
Ku TT, Chen MJ, Li B, Yun Y, Li GK, Sang N. Synergistic Effects of Particulate Matter (PM2.5) and Sulfur Dioxide(SO2) on Neurodegeneration Via the MicroRNA-Mediated Regulation of Tau Phosphorylation. The Royal Society of Chemistry 2017; 6: 7-16.
Kumar S, Ojha AK, Ahmed B, Kumar A, Das J, Materny A. Tunable (violet to green) emission by high-yield graphene quantum dots and exploiting its unique properties towards sun-light-driven photocatalysis and supercapacitor electrode materials. Materials Today Communications 2017; 11: 76-86.
Kwon S, Park Y, Park J, Kim J, Choi KH, Cha JS. Characteristics of on-road NOx emissions from Euro 6 light-duty diesel vehicles using a portable emissions measurement system. Science of The Total Environment 2017; 576: 70-77.
Lapuerta M, Armas O, Rodriguez-Fernandez J. Effect of biodiesel fuels on diesel engine emissions. Progress in Energy and Combustion Science 2008; 34: 198-223.
Legreid G, Reimann S, Steinbacher M, Staehelin J, Young D, Stemmler K. Measurements of VOCs and NMHCs in a Swiss highway tunnel for estimation of road transport emissions. Environmental Science & Technology 2007; 41: 7060-7066.
Lei Y, Wu Y, Jiang Z, Ouyang Z, Hu J, Lin Y, Du P, Zou B. Effect of various mass ratios of graphene quantum dots doping on the photoelectric performance of ZnSe-GQDs nanocomposites. Materials Science in Semiconductor Processing 2021; 128: 105740.
Li LS, Yan X. Colloidal Graphene Quantum Dots. The Journal of Physical Chemistry Letters 2010; 17: 2572-2576.
Li Y, Hu Y, Zhao Y, Shi GQ, Deng L, Hou YB, Qu L. An Electrochemical Avenue to Green‐Luminescent Graphene Quantum Dots as Potential Electron‐Acceptors for Photovoltaics. Advanced Materials 2011; 23: 776-780.
Liaquat AM, Masjuki HH, Kalam MA, Rizwanul FIM, Hazrat MA, Varman M, Mofijur M, Shahabuddin M. Effect of Coconut Biodiesel Blended Fuels on Engine Performance and Emission Characteristics. Procedia Engineering 2013; 56: 583-590.
Lin YC, Lee WJ, Hou HC. PAH emissions and energy efficiency of palm-biodiesel blends fueled on diesel generator. Atmospheric Environment 2006; 40: 3930-3940.
Liu SH, Lin YC, Hsu KH. Emissions of Regulated Pollutants and PAHs from Waste-cooking-oil Biodiesel-fuelled Heavy-duty Diesel Engine with Catalyzer. Aerosol Air Qual. Res 2012; 12: 218-227.
Liu P, Chen GF. Porous Materials:Processing and Applications. Butterworth-Heinemann 2014.
Mahalingam S and Ganesan S. Effect of nano-fuel additive on performance and emission characteristics of the diesel engine using biodiesel blends with diesel fuel. International Journal of Ambient Energy 2020; 41.
Mehata MS, Biswas S. Synthesis of fluorescent graphene quantum dots from graphene oxide and their application in fabrication of GQDs@AgNPs nanohybrids and sensing of H2O2. Ceramics International 2021; 47: 19063-19072.
Mahesh-Kumar AR, Kannan M, Nataraj G. A study on performance, emission and combustion characteristics of diesel engine powered by nano-emulsion of waste orange peel oil biodiesel. Renewable Energy 2020; 146: 1781-1795.
Mahmudul HM, Hagos FY, Mamat R, Adam AA, Ishak WFW, Alenezi R. Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review. Renewable and Sustainable Energy Reviews 2017; 72: 497-509.
Meng Z. Oxidative damage of sulfur dioxide on various organs of mice: sulfur dioxide is a systemic oxidative damage agent. Inhalation Toxicology 2003; 15: 181-195.
Metha RN, Chakraborty M, Parikh PA. Nanofuels: Combustion, engine performance and emissions. Fuel 2014; 120: 91-97.
Mofijur M, Rasul MG, Hassan NMS, Kakam MA, Mahmudul HM. Chapter Fourteen - Assessment of Physical, Chemical, and Tribological Properties of Different Biodiesel Fuels. Clean Energy for Sustainable Development 2017; 14: 441-463.
Mohammad S, Tarahom MG, Ahmad J, Aram HM. Performance and emission characteristics of a diesel engine fueled with functionalized multi-wall carbon nanotubes (MWCNTs-OH) and diesel–biodiesel–bioethanol blends. Energy Reports 2020; 6: 1438-1447.
Mohammadi M, Neshat E. Accurate prediction of NOx emissions from diesel engines considering in-cylinder ion current. Environmental Pollution 2020; 266: 115347.
More MP, Lohar PH, Patil AG, Patil PO, Deshmukh PK. Controlled synthesis of blue luminescent graphene quantum dots from carbonized citric acid: Assessment of methodology, stability, and fluorescence in an aqueous environment. Materials Chemistry and Physics 2018; 220: 11-22.
Tomar M and Kumar N. Effect of multi-walled carbon nanotubes and alumina nano-additives in a light duty diesel engine fuelled with schleichera oleosa biodiesel blends. Sustainable Energy Technologies and Assessments 2020; 42: 100833.
Oksanen VT, Lehtovaara AJ, Kallio MH. Load capacity of lubricated bismuth bronze bimetal bearing under elliptical sliding motion. Wear 2017; 388-389: 72-80.
Ors I, Sarikoc S, Atabani AE, Unalan S, Akansu SO. The effects on performance, combustion and emission characteristics of DICI engine fuelled with TiO2 nanoparticles addition in diesel/biodiesel/n-butanol blends. Fuel 2018; 234: 177-188.
Osaka Y, Kito T, Kobayashi N, Kurahara S, Huang H, Yuan H, He ZH. Removal of sulfur dioxide from diesel exhaust gases by using dry desulfurization MnO2 filter. Separation and Purification Technology 2015; 150: 80-85.
Othman MF, Adam A, Najafi G, Mamat R. Green fuel as alternative fuel for diesel engine: A review. Renewable and Sustainable Energy Reviews 2017; 80: 694-709.
Pan DY, Zhang JC, Li Z, Wu MH. Hydrothermal Route for Cutting Graphene Sheets into Blue‐Luminescent Graphene Quantum Dots. Advanced Materials 2010 ; 22 : 734-738.
Pan S, Wei J, Tao C, Lv G, Qian Y, Liu Q, Han W. Discussion on the combustion, performance and emissions of a dual fuel diesel engine fuelled with methanol-based CeO2 nanofluids. Fuel 2021; 302: 121096.
Patel C, Chandra K, Hwang J, Agarwal RA, Gupta N, Bae C, Gupta T, Agarwal AK. Comparative compression ignition engine performance, combustion, and emission characteristics, and trace metals in particulates from Waste cooking oil, Jatropha and Karanja oil derived biodiesels. Fuel 2019; 236: 1366-1376.
Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge LH, Song L, Alemany LB, Zhan XB, Gao GH, Vithayathil SA, Kaipparettu BA, Marti AA, Hayashi T, Zhu JJ, Ajayan PM. Graphene Quantum Dots Derived from Carbon Fibers. Nano Letters 2012; 12: 844-849.
Pillay AE, Elkadi M, Fok SC, Stephen S, Manuel J, Khan MZ, Unnithan S. A comparison of trace metal profiles of neem biodiesel and commercial biofuels using high performance ICP-MS. Fuel 2019; 97: 385-389.
Qi DH, Chen H, Lee CF, Geng LM, Bian YZ. Experimental studies of a naturally aspirated, DI diesel engine fuelled with ethanol-biodiesel-water micro-emulsions. Energy Fuels 2009; 24: 652-663.
Qi DH, Chen H, Matthews RD, Bian Y. Combustion and emission characteristics of ethanol-biodiesel-water micro-emulsions used in a direct injection compression ignition engine. Fuel 2010; 89: 958-964.
Raghunath CV, Mondal MK. Experimental scale multi component absorption of SO2 and NO by NH3/NaClO scrubbing. Chemical Engineering Journal 2017; 314: 537-547.
Raman LA, Deepanraj B, Rajakumar S, Sivasubramanian V. Experimental investigation on performance, combustion and emission analysis of a direct injection diesel engine fuelled with rapeseed oil biodiesel. Fuel 2019; 246: 69-74.
Ritter KA, Lyding JW. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Natrue Materials 2009; 8: 235-242.
Sajin JB, Pillai GO, Kesavapillai M, Varghese S. Effect of nanoparticle on emission and performance characteristics of biodiesel. International Journal of Ambient Energy 2019; 1-7.
Sappok A, Kamp C, Wong V. Sensitivity Analysis of Ash Packing and Distribution in Diesel Particulate Filters to Transient Changes in Exhaust Conditions. International Journal of Fuels and Lubricants 2012; 5: 733-750.
Selvan VAM, Anand RB, Udayakumar M. Effect of Cerium Oxide Nanoparticles and Carbon Nanotubes as fuel-borne additives in Diesterol blends on the performance, combustion and emission characteristics of a variable compression ratio engine. Fuel 2014; 130: 160-167.
Shaid EM, Jamal Y. Production of biodiesel: A technical review. Renewable and Sustainable Energy Reviews 2011; 15: 4732-4745.
Sharma M, Agarwal AK, Bharathi KVL. Characterization of exhaust particulates from diesel engine. Atmospheric Environment 2005; 39: 3023-3028.
Shukla PC, Gupta T, Labhsetwar NK, Agarwal AK. Trace metals and ions in particulates emitted by biodiesel fuelled engine. Fuel 2017; 188: 603-609.
Singh D, Sharma D, Soni SL, Sharma S, Sharma PK, Jhalani A. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 2020; 262: 116553.
Singh SP, Singh D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews 2010; 14: 200-216.
Soudagara MEM, Ghazalia NNN, Kalama MA, Badruddinb IA, Banapurmathc NR, Akram N. The effect of nano-additives in diesel-biodiesel fuel blends: A comprehensive review on stability, engine performance and emission characteristics. Energy Conversion and Management 2018; 178: 146-177.
Sumita D and Rahul DM. Effects of Iron Nanoparticle Fuel Additive on the Performance and Exhaust Emissions of a Compression Ignition Engine Fueled With Diesel and Biodiesel. The Journal of Thermal Science and Engineering Applications 2018; 10: 041002.
Syafiuddin A, Chong JH, Yuniarto A, Hadibarata T. The current scenario and challenges of biodiesel production in Asian countries: A review. Bioresource Technology Reports 2020; 12: 100608.
Tuccar G, Tosun E, Ozgur T, Aydin K. Diesel engine emissions and performance from blends of citrus sinensis biodiesel and diesel fuel. Fuel 2014; 132: 7-11.
Twigg M, Phillips PR. Cleaning the Air We Breathe - Controlling Diesel Particulate Emissions from Passenger Cars. Platinum Metals Review 2009; 53: 27-34.
Ulrich A, Wichser A, Hess A, Heeb N, Emmenegger L, Czerwinski J, Kasper M, Mooney J, Mayer A. Particle and metal emissions of diesel and gasoline engines-Are particle filters appropriate measures ? Generated Nanoparticles 2012; 24-27.
Verma P, Sharma MP. Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews 2016; 62: 1063-1071.
Wang L, Li W, Wu B, Li Z, Wang S, Liu Y, Pan D, Wu M. Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing. Chemical Engineering Journal 2016; 300: 75-82.
Wang L, Wang Y, Xu T, Liao H, Yao CJ, Liu Y, Li Z, Chen ZW, Pan DY, Sun L, Wu MH. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nature Communications 2014; 5: 5357.
Wang Y, Liang X, Tang G, Chen Y, Dong L, Shu G. Impact of lubricating oil combustion on nanostructure, composition and graphitization of diesel particles. Fuel 2017; 190: 237-244.
Xiao H, Guo F, Wang R, Yang X, Li S, Ruan J. Combustion performance and emission characteristics of diesel engine fueled with iso-butanol/biodiesel blends. Fuel 2020; 268: 117387.
Yan X, Cui X, Li BS, Li LS. Large, Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics. Nano Letters 2010; 10: 1869-1873.
Yan X, Cui X, Li LS. Synthesis of Large, Stable Colloidal Graphene Quantum Dots with Tunable Size. Journal of the American Chemical Society 2010; 132: 5944-5945.
Yang L, Takase M, Zhang M, Zhao M, Wu X. Potential non-edible oil feedstock for biodiesel production in Africa: A survey. Renewable and Sustainable Energy Reviews 2014; 38: 461-477.
Yetter RA, Risha GA, Son SF. Metal particle combustion and nanotechnology. Proceedings of the Combustion Institute 2009; 32: 1819-1838.
Yilmaz N, Vigil FM, Donaldson AB, Darabseh T. Investigation of CI engine emissions in biodiesel–ethanol–diesel blends as a function of ethanol concentration. Fuel 2014; 115: 790-793.
Zhang Z, Zhang J, Chen N, Qu L. Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy & Environmental Science 2012; 5: 8869-8890.
Zheng Y, Lan H, Magesh T, Tien JC, Li Y. Effect of single dead end entry inclination on DPM plume dispersion. International Journal of Mining Science and Technology 2017; 27: 401-406.
Zhu SJ, Song YB, Wang J, Wan H, Zhang Y, Ning Y, Yang B. Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nanotoday 2017; 13: 10-14.
Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials 2010; 22: 3906-3924.
Zhuang QF, Wang Y, Ni YN. Solid‐phase synthesis of graphene quantum dots from the food additive citric acid under microwave irradiation and their use in live‐cell imaging. Luminescence 2016; 31: 746-753.
翁詩雅,製備多壁奈米碳管混合三相乳化柴油生質柴油降低柴油引擎污染物排放之研究,國立中山大學環境工程研究所碩士論文,2017
張文愛,柴油引擎添加氫氣的引擎性能、燃燒特性與污染排放探討,國立中興大學機械工程研究所碩士論文,2015。
張軒銘、于明嘉、陳育智、謝志誠,利用固態催化劑將黃豆油轉酯化成生質柴油,2007。
黃志成、林成原,柴油引擎排放污染物特性探討,燃燒季刊第四期,2 ~ 10頁,2003。
蔣本基、張怡怡、江鴻龍,都會型氣膠(PM2.5)管制策略規劃,期末報告,國立台灣大學環境工程研究所,2003。
鄭儀節,以二甲醚混合柴油對柴油引擎醛酮類化合物排放特徵之研究,國立中山大學環境工程系研究所碩士論文,2011。
謝忠岳、黃立言、蔡宗能、李柏群,一氧化碳中毒對心臟功能的影響,內科學誌第27期,223 ~ 232頁,2016。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-09-06
校外 Off-campus:開放下載的時間 available 2026-09-06

您的 IP(校外) 位址是 3.15.186.220
現在時間是 2024-08-26
論文校外開放下載的時間是 2026-09-06

Your IP address is 3.15.186.220
The current date is 2024-08-26
This thesis will be available to you on 2026-09-06.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2026-09-06

QR Code