論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
研磨參數對製程前段超薄晶圓表面粗糙度與後段扇出型封裝翹曲之影響 Grinding Process Effects on Surface Roughness of the Front End Ultra-Thin Silicon Wafer and on Warpage of the Back End Fan-Out Packaging |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
199 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2022-08-29 |
繳交日期 Date of Submission |
2022-09-19 |
關鍵字 Keywords |
晶背研磨、矽晶圓、扇出型封裝、表面粗糙度、翹曲 Back Grinding, Silicon Wafer, Fan-Out Wafer-Level Packaging, Surface Roughness, Warpage |
||
統計 Statistics |
本論文已被瀏覽 336 次,被下載 548 次 The thesis/dissertation has been browsed 336 times, has been downloaded 548 times. |
中文摘要 |
晶圓背面研磨(Back Grinding)是半導體產業常用到的製程技術之一,能夠用來減少晶片的厚度,清除汙染物,增加散熱率,並且表面光滑有利於後續製程的進行,因此判斷研磨的好壞相當重要。 本研究探討的項目分為兩個部分,第一個是測量薄型矽晶圓的表面粗糙度,首先基於田口設計法選出七種晶圓研磨參數,再利用粗糙度表面輪廓機沿著晶圓表面,由內而外依序測量,並且選用中心線平均粗度(Ra)當作量測基準,可以發現表面粗糙度的數值內小外大排列,顯示越是外圍的晶圓,其表面受到的破壞程度越大;接著搭配理論計算砂輪與晶圓的研磨參數值,觀察在不同晶圓自轉速、砂輪自轉速、砂輪進給率的參數下,對於晶圓表面應力的施加,同時使用有限元素軟體ANSYS 18.2用以模擬動態晶圓研磨的應力變化;最後將實驗、理論與模擬的結果相互對照,實現運用有限元素模擬的方式預測晶圓研磨表面粗糙度的數值。 第二個研究項目探討扇出型封裝的製程中,研磨晶片和環氧樹脂的表面應力變化,這是因為在研磨後晶圓會因為殘餘應力的釋放產生翹曲現象,故本研究利用動態模擬晶圓研磨的技術,來驗證扇出型晶圓的實際翹曲量,並且預測在不同晶片排列底下的翹曲量數值。最後利用實驗設計的中央合成法決定出七種晶圓的影響因子進行模擬,並利用迴歸直線分析找出最佳化參數,經研究改善晶圓翹曲幅度可達25%,故可有效降低晶圓翹曲之數值。 |
Abstract |
Back grinding is one of the most commonly used manufacturing process techniques in the semiconductor industry. It can reduce the thickness of silicon wafer, clean and remove stains, increase the heat dissipation rate, and also improve the surface lubricity during subsequent manufacturing process. Therefore, it is important to judge back grinding quality in the silicon wafer. The items to be explored in this research are divided into two parts, the surface roughness of a thin silicon wafer is first measured, the number of seven types of silicon wafer polishing selected by the Taguchi design, the roughness of the silicon wafer surface along the surface grinding line measure by surfcorder. From internal to external measurement, center line with arithmetic mean deviation (Ra) for measurement standard, surface roughness number inside small outside large arrangement, appearance over the outside wafer edge, the degree of destroy on the surface. Furthermore, theoretical calculation of wheel and wafer grinding process parameter, observed surface stress under different wafer rotation speed, wheel rotation speed and wheel feed rate. Used finite element software ANSYS 18.2 simulated dynamic silicon wafer grinding stress change. Finally, comparison of experiment, theory and simulation results. Predictive silicon wafer grinding surface roughness values. The second research about Fan-Out wafer-level packaging (FOWLP), grinding both silicon chip and epoxy molding compound (EMC) observe surface stress distribution. After grinding the phenomenon of warpage due to the residual stress released. Used dynamic simulated silicon wafer grinding technology to verify FOWLP actually warpage, and predict different chip arrangement FOWLP warpage values. Eventually, dealing with the central composite design from the experimental design, and then determine seven influence factors to simulate. Using linear regression analysis to find out the parameters optimization, it can improve the wafer warpage up to 25% and reduce the values. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xiii 中英文對照表 xv 第一章緒論 1 1.1前言 1 1.2研究背景 3 1.3研究動機 12 1.4研究目的 13 1.5論文結構 14 第二章文獻回顧 15 2.1前言 15 2.2研磨實驗 16 2.3研磨模擬 21 2.4表面粗糙度量測相關文獻 23 2.5裂紋深度與損傷層之研究 27 2.6 Fan in/out結構失效之研究 32 2.7 Fan-Out晶片翹曲相關之研究 34 2.8 RDL重分佈層相關之研究 35 2.9 EMC材料相關之研究 38 2.10結語 41 2.11文獻回顧之整理 42 第三章矽晶圓研磨研究 52 3.1前言 52 3.2矽晶圓實驗流程圖 54 3.3實驗樣品 55 3.4實驗方法 57 3.5實驗量測位置 67 3.6實驗結果 68 3.7矽晶圓研磨理論 73 3.7.1研磨顆粒的滑動力與切削力 78 3.7.2砂輪研磨晶圓的總研磨力 80 3.7.3表面粗糙度之理論計算 81 3.7.4理論計算之材料參數 83 3.7.5次表面之裂紋深度 86 3.8矽晶圓研磨模擬 88 3.8.1一次因子參數影響 91 3.8.2矽晶圓研磨應力之模擬分析探討 96 3.9結語 101 第四章Fan-Out晶圓翹曲研究 102 4.1前言 102 4.2 Fan-Out晶圓翹曲之研究 103 4.3 Fan-Out晶圓研磨厚度 104 4.4 Fan-Out晶片邊界條件設定 106 4.5 Fan-Out晶片建模尺寸 108 4.6 Fan-Out材料參數 109 4.7 Fan-Out晶圓翹曲量驗證 111 4.8不同Fan-Out晶片排列之結構 114 4.9不同Fan-Out晶片排列之切割道變化 118 4.10結語 120 第五章實驗設計之結果與討論 121 5.1前言 121 5.2流程圖 122 5.3實驗因子 123 5.4 ANOVA分析 124 5.5中央合成設計 127 5.6迴歸分析 128 5.7影響因子占比 132 5.8反應曲面設計 133 5.9迴歸方程式 146 5.10結論 149 第六章結論與未來展望 152 6.1結論 152 6.2未來展望 153 參考文獻 154 附件一 169 附件二 176 |
參考文獻 References |
[1] 翁偉智 (2021) 動態模擬與實驗測試於晶背研磨製程對矽晶圓/扇出型晶圓級封裝研磨所產生的彎曲與應力的探討 碩士論文,台灣,高雄,中山大學 [2] 取自 正恩科技- N-TEC,https://www.n-tec.com.tw/wafer-grinding/518a/ (引用日期2022/7/2) [3] 取自 佳品研磨工具有限公司,https://www.cptools.com.tw/back-grinding-wheels.html (引用日期2022/7/2) [4] Braun, T., Becker, K. F., Hoelck, O., Voges, S., Kahle, R., Dreissigacker, M., & Schneider-Ramelow, M. (2019). Fan-Out wafer and panel level packaging as packaging platform for heterogeneous integration. Micromachines, Volume 10, Issue 5, 342. [5] Gao, S., Dong, Z., Kang, R., Zhang, B., & Guo, D. (2015). Warping of silicon wafers subjected to back-grinding process.Precision Engineering, Volume 40, Issue 87-93. [6] Matsui, S., & Horiuchi, T. (1991). Parallelism improvement of ground silicon wafers. [7] Sharp, K. W., Miller, M. H., & Scattergood, R. O. (2000). Analysis of the grain depth-of-cut in plunge grinding. Precision engineering, Volume 24, Issue 3, 220-230. [8] Kim, Y., Kang, S. K., Kim, S. D., & Kim, S. E. (2012). Wafer warpage analysis of stacked wafers for 3D integration. Microelectronic engineering, Volume 89, Issue 46-49. [9] Pei, Z. J., & Strasbaugh, A. (2001). Fine grinding of silicon wafers. International Journal of Machine Tools and Manufacture, Volume 41, Issue 659-672. [10] Pei, Z. J., Fisher, G. R., & Liu, J. (2008). Grinding of silicon wafers: a review from historical perspectives. International Journal of Machine Tools and Manufacture, Volume 48, Issue 12-13, 1297-1307. [11] Gao, S., Kang, R., Dong, Z., & Zhang, B. (2013). Edge chipping of silicon wafers in diamond grinding. International Journal of Machine Tools and Manufacture, Volume 64, Issue 31-37. [12] Gao, S., Huang, H., Zhu, X., & Kang, R. (2017). Surface integrity and removal mechanism of silicon wafers in chemo-mechanical grinding using a newly developed soft abrasive grinding wheel. Materials Science in Semiconductor Processing, Volume 63, Issue 97-106. [13] Dong, Z., & Lin, Y. (2020). Ultra-thin wafer technology and applications: A review. Materials Science in Semiconductor Processing, Volume 105, Issue 104681. [14] Inoue, F., Podpod, A., Peng, L., Phommahaxay, A., Rebibis, K. J., Uedono, A., & Beyne, E. (2020). Morphological characterization and mechanical behavior by dicing and thinning on direct bonded Si wafer. Journal of Manufacturing Processes, Volume 58, Issue 811-818. [15] Young, H. T., Liao, H. T., & Huang, H. Y. (2006). Surface integrity of silicon wafers in ultra precision machining. The International Journal of Advanced Manufacturing Technology, Volume 29 Issue 3, 372-378. [16] Chen, J. B., Fang, Q. H., Wang, C. C., Du, J. K., & Liu, F. (2016). Theoretical study on brittle–ductile transition behavior in elliptical ultrasonic assisted grinding of hard brittle materials. Precision engineering, Volume 46, Issue 104-117. [17] Jiao, Y., Pei, Z. J., Lei, S., Lee, E. S., & Fisher, G. R. (2006). A fuzzy adaptive network model for waviness removal in grinding of wire-sawn silicon wafers. [18] Jiang, A. L. X., Ming, L. C., Gao, J. C. Y., & Hwee, T. K. (2006). Silicon wafer backside thinning with mechanical and chemical method for better mechanical property. In 2006 7th International Conference on Electronic Packaging Technology, 26 Aug – 29 Aug. Shanghai, China. [19] Nakamura, T., Mizushima, Y., Kitada, H., Kim, Y. S., Maeda, N., Kodama, S., ... & Ohba, T. (2013). Influence of wafer thinning process on backside damage in 3D integration. In 2013 IEEE International 3D Systems Integration Conference (3DIC), 02 Oct. – 04 Oct. San Francisco, CA, USA. [20] Chivas, R., & Silverman, S. (2014). Adaptive grinding and polishing of packaged integrated circuits. In 2014 IEEE International Reliability Physics Symposium, 01 Jun - 05 Jun. Waikoloa, HI, USA: Hilton Waikoloa Village. [21] Li, Z., Jing, X., Jiang, F., & Zhang, W. (2014). Modeling and simulation of silicon wafer backside grinding process. In 2014 International Conference on Electronic Packaging Technology, 12 Aug - 15 Aug. Chengdu, China: Wangjiang Hotel. [22] Watanabe, N., Aoyagi, M., Katagawa, D., Bandoh, T., Mitsui, T., & Yamamoto, E. (2014). Small-diameter TSV reveal process using direct Si/Cu grinding and metal contamination removal. In 2014 International 3D Systems Integration Conference (3DIC), 01 Dec - 03 Dec. Kinsdale, Ireland: Actons Hotel. [23] Nakamura, T., Mizushima, Y., Kim, Y. S., Sugie, R., & Ohba, T. (2015). Characterization of stress distribution in ultra-thinned DRAM wafer. In 2015 International 3D Systems Integration Conference (3DIC), 31 Aug - 02 Sep. Sendai, Japan: International Center. [24] Alreja, C., & Subbiah, S. (2018). Low pressure phase transformations during high-speed, high-temperature scratching of silicon. Journal of Micro and Nano-Manufacturing, Volume 6, Issue 4. [25] Yamin, H., Bo, L., Lei, Z., Kee, T. P., Jeffrey, L., & Zhihong, M. (2017). Stress analysis on ultra-thin ground CMOS-MEMS wafers via micro-Raman spectroscopy. In 2017 IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits, 04 Jul - 07 Jul. Chengdu, China. [26] Bertheau, J., Inoue, F., Phommahaxay, A., Iacovo, S., Rassoul, N., Sleeckx, E., ... & Nakamura, A. (2018). Extreme thinned-wafer bonding using low temperature curable polyimide for advanced wafer level integrations. In 2018 IEEE 68th Electronic Components and Technology Conference, 29 May - 01 June. San Diego, CA, USA: Sheraton San Diego Hotel & Marina. [27] Uemura, T., Chung, B., Jo, J., Jiang, H., Ji, Y., Jeong, T. Y., ... & Machida, K. (2020). Backside Alpha-Irradiation Test in Flip-Chip Package in EUV 7 nm FinFET SRAM. In 2020 IEEE International Reliability Physics Symposium, 28 Apr – 30 May. Dallas, TX, USA: Online. [28] Inoue, F., Jourdain, A., Peng, L., Phommahaxay, A., Kosemura, D., De Wolf, I., ... & Beyne, E. (2018). Edge trimming induced defects on direct bonded wafers. Journal of Electronic Packaging, Volume 140, Issue 3, 031004. [29] Lin, B., Zhou, P., Wang, Z., Yan, Y., Kang, R., & Guo, D. (2018). Analytical elastic–plastic cutting model for predicting grain depth-of-cut in ultrafine grinding of silicon wafer. Journal of Manufacturing Science and Engineering, Volume 140, Issue 12. [30] Nie, Z., Wang, G., Wang, L., & Rong, Y. (2019). A coupled thermomechanical modeling method for predicting grinding residual stress based on randomly distributed abrasive grains. Journal of Manufacturing Science and Engineering, Volume 141, Issue 8, 081005. [31] Abdelnaby, A. H., Potirniche, G. P., Elshabini, A., Barlow, F., Groothuis, S. K., & Parker, R. S. (2012). Numerical simulation of heat generation during the back grinding process of silicon wafers. In 2012 IEEE Workshop on Microelectronics and Electron Devices, 20 Apr - 20 Apr. Boise, ID, USA: Boise State University. [32] Hirayama, T., Shiotani, H., Yamada, K., Yamashita, N., Matsuoka, T., Sawada, H., & Kawahara, K. (2015). Hydrodynamic performance produced by nanotexturing in submicrometer clearance with surface roughness. Journal of Tribology, Volume 137, Issue 1, 011704. [33] Chidambaram, S., Pei, Z. J., & Kassir, S. (2003). Fine grinding of silicon wafers: a mathematical model for grinding marks. International Journal of Machine Tools and Manufacture, Volume 43, Issue 15, 1595-1602. [34] Chen, C. C. A., & Hsu, L. S. (2008). A process model of wafer thinning by diamond grinding. Journal of Materials Processing Technology, Volume 201, Issue 1-3, 606-611. [35] Sun, B., Qin, F., Sun, J., Chen, P., & An, T. (2017). Dynamic finite element modeling of backside grinding process for TSV wafer. In 2017 18th International Conference on Electronic Packaging Technology, 16Aug - 19 Aug. Harbin, China. [36] S. ZHAO, F. QIN, M. YANG, M. XIANG and D. YU. (2019). Study on warpage evolution for six-side molded WLCSP based on finite element analysis. In 2019 20th International Conference on Electronic Packaging Technology, 12 Aug - 15 Aug. Hong Kong, China: Science Park, Shatin. [37] Tian, Y. B., Zhou, L., Zhong, Z. W., Sato, H., & Shimizu, J. (2011). Finite element analysis of deflection and residual stress on machined ultra-thin silicon wafers. Semiconductor science and technology, Volume 26, Issue 10, 105002. [38] Kim, I. J., & Lee, N. E. (2013). Enhancement of flexural stress and reduction of surface roughness through changes in gas concentrations during high-speed chemical dry thinning of silicon wafers. Thin solid films, Volume 547, Issue 173-177. [39] Zhou, L. B., Eda, H., & Shimizu, J. (2002). State-of-the-art technologies and kinematical analysis for one-stop finishing of φ300 mm Si wafer. Journal of materials processing technology, Volume 129, Issue 1-3, 34-40. [40] Sun, J., Chen, P., Qin, F., An, T., Yu, H., & He, B. (2018). Modelling and experimental study of roughness in silicon wafer self-rotating grinding. Precision Engineering, Volume 51, Issue 625-637. [41] Sudani, N., Venkatakrishnan, K., & Tan, B. (2009). Laser singulation of thin wafer: Die strength and surface roughness analysis of 80 μm silicon dice. Optics and lasers in Engineering, Volume 47, Issue 7-8, 850-854. [42] Miao, W., Ding, Y., Zhao, Y., Bao, H., Yan, N., Yang, W., ... & Liu, B. (2020). Modified gel casting technique to fabricate honeycomb structured vitrified-bonded ultrafine diamond grinding wheels. Ceramics International, Volume 46, Issue 4, 4462-4469. [43] Hecker, R. L., & Liang, S. Y. (2003). Predictive modeling of surface roughness in grinding. International Journal of Machine Tools and Manufacture, Volume 43, Issue 8, 755-761. [44] Agarwal, S., & Rao, P. V. (2005). A probabilistic approach to predict surface roughness in ceramic grinding. International Journal of Machine Tools and Manufacture, Volume 4, Issue 6, 609-616. [45] Zhang, Z., Huo, F., Wu, Y., & Huang, H. (2011). Grinding of silicon wafers using an ultrafine diamond wheel of a hybrid bond material. International Journal of Machine Tools and Manufacture, Volume 51, Issue 1, 18-24. [46] Chen, J., Fang, Q., & Li, P. (2015). Effect of grinding wheel spindle vibration on surface roughness and subsurface damage in brittle material grinding. International Journal of Machine Tools and Manufacture, Volume 91, Issue 12-23. [47] Tay, C. J., & Quan, C. (2003). A parametric study on surface roughness evaluation of semi-conductor wafers by laser scattering. Optik, Volume 114, Issue 1, 1-6. [48] Zhang, S. J., To, S., Wang, S. J., & Zhu, Z. W. (2015). A review of surface roughness generation in ultra-precision machining. International Journal of Machine Tools and Manufacture, Volume 91, Issue 76-95. [49] Zhou, P., Xu, S., Wang, Z., Yan, Y., Kang, R., & Guo, D. (2016). A load identification method for the grinding damage induced stress (GDIS) distribution in silicon wafers. International Journal of Machine Tools and Manufacture, Volume 107, Issue 1-7. [50] Luo, S. Y., & Chen, K. C. (2009). An experimental study of flat fixed abrasive grinding of silicon wafers using resin-bonded diamond pellets. Journal of materials processing technology, Volume 209, Issue 2, 686-694. [51] McLellan, N., Fan, N., Liu, S., Lau, K., & Wu, J. (2004). Effects of wafer thinning condition on the roughness, morphology and fracture strength of silicon die. J. Electron. Package., Volume 126, Issue 1, 110-114. [52] Chung, C., Korach, C. S., & Kao, I. (2011). Experimental study and modeling of lapping using abrasive grits with mixed sizes. Journal of manufacturing science and engineering, Volume 133, Issue 3. [53] Suratwala, T., Steele, R., Feit, M. D., Wong, L., Miller, P., Menapace, J., & Davis, P. (2008). Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing. Journal of Non-Crystalline Solids, Volume 354, Issue 18, 2023-2037. [54] Zhang, W., & Zhu, J. (2009). Controlling subsurface damage in neodymium-doped phosphate glass. Optik, Volume 120, Issue 15, 752-757. [55] Yan, J., Asami, T., Harada, H., & Kuriyagawa, T. (2009). Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining. Precision engineering, Volume 33, Issue 4, 378-386. [56] Ou, L., Guo, S., Zhe, Y., Dong, Z., Kang, R., Guo, D., & Shi, K. (2020). Polishing tool with phyllotactic distributed through-holes for photochemically combined mechanical polishing of N-type gallium nitride wafers. Precision Engineering, Volume 66, Issue 135-143. [57] Xiao, H., Wang, H., Yu, N., Liang, R., Tong, Z., Chen, Z., & Wang, J. (2019). Evaluation of fixed abrasive diamond wire sawing induced subsurface damage of solar silicon wafers. Journal of Materials Processing Technology, Volume 273, Issue 116267. [58] Yin, J., Bai, Q., Haitjema, H., & Zhang, B. (2020). Two-dimensional detection of subsurface damage in silicon wafers with polarized laser scattering. Journal of Materials Processing Technology, Volume 284, Issue 116746. [59] Yin, J., Bai, Q., Li, Y., & Zhang, B. (2018). Formation of subsurface cracks in silicon wafers by grinding. Nanotechnology and Precision Engineering, Volume 1, Issue 3, 172-179. [60] Radet, M., Jaffrennou, P., Habka, N., Penaud, J., & Lombardet, B. (2012). Analysis of saw damage in monocrystalline slurry sawn Si wafers using Raman spectroscopy. In 2012 38th IEEE Photovoltaic Specialists Conference, 03 Jun - 08 Jun. Austin, TX, USA: Austin Convention Center. [61] Zhang, L., Chen, P., An, T., Dai, Y., & Qin, F. (2019). Analytical prediction for depth of subsurface damage in silicon wafer due to self-rotating grinding process. Current Applied Physics, Volume 19, Issue 5, 570-581. [62] Zhou, L., Tian, Y. B., Huang, H., Sato, H., & Shimizu, J. (2012). A study on the diamond grinding of ultra-thin silicon wafers. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Volume 226, Issue 1, 66-75. [63] Gao, S., Kang, R. K., Guo, D. M., & Huang, Q. S. (2010). Study on the subsurface damage distribution of the silicon wafer ground by diamond wheel. In Advanced Materials Research, Volume 126, Issue 113-118. [64] Guo, W., Anantharajan, S. K., Zhang, X., & Deng, H. (2020). A study on the damage layer removal of single-crystal silicon wafer after atmospheric-pressure plasma etching. Journal of Micro-and Nano-Manufacturing, Volume 8, Issue 2, 024501. [65] Li, H. N., Yu, T. B., Da Zhu, L., & Wang, W. S. (2017). Analytical modeling of grinding-induced subsurface damage in monocrystalline silicon. Materials & Design, Volume 130, Issue 250-262. [66] Misra, A., & Fininie, I. (1979). On the scribing and subsequent fracturing of silicon semiconductor wafers. Journal of Materials Science, Volume 14, Issue 11, 2567-2574. [67] Fan, X. J., Varia, B., & Han, Q. (2010). Design and optimization of thermo-mechanical reliability in wafer level packaging. Microelectronics Reliability, Volume 50, Issue 4, 536-546. [68] Zhang, S., Duan, R., Xu, S., Xue, P., Wang, C., Chen, J., & He, P. (2022). Shear performance and accelerated reliability of solder interconnects for Fan-Out wafer-level package. Journal of Advanced Joining Processes, Volume 5, Issue 100076. [69] Lau, J. H., Li, M., Li, Q. M., Xu, I., Chen, T., Li, Z., ... & Lee, R. (2018). Design, materials, process, fabrication, and reliability of Fan-Out wafer-level packaging. IEEE Transactions on Components, Packaging and Manufacturing Technology, Volume 8, Issue 6, 991-1002. [70] Lau, J. H. (2019). Recent advances and trends in Fan-Out wafer/panel-level packaging. Journal of Electronic Packaging, Volume 141, Issue 4, 040801. [71] Tseng, C. F., Liu, C. S., Wu, C. H., & Yu, D. (2016). InFO (wafer level integrated Fan-Out) technology. In 2016 IEEE 66th Electronic Components and Technology Conference, 31 May – 3 Jun. Las Vegas, NV, USA: The Cosmopolitan of Las Vegas. [72] Xu, J., Sun, Y., Liu, J., Wei, Y. D., Zhao, W. S., & Wang, D. W. (2022). Fabrication and high-frequency characterization of low-cost fan-in/out WLP technology with RDL for 2.5 D/3D heterogeneous integration. Microelectronics Journal, Volume 119, Issue 105332. [73] Xi, J., Yang, D., Bai, L., Zhai, X., Xiao, F., Guo, H., ... & Lai, C. M. (2013). Reliability of RDL structured wafer level packages. In 2013 14th International Conference on Electronic Packaging Technology, 11 Aug - 14 Aug. Dalian, China. [74] Yu, C. K., Chiang, W. S., Liu, N. W., Lin, M. Z., Fang, Y. H., Lin, M. J., ... & Huang, M. (2017). A unique failure mechanism induced by chip to board interaction on Fan-Out wafer level package. In 2017 IEEE International Reliability Physics Symposium, 02 Apr - 06 Apr. Monterey, CA, USA: Hyatt Regency Monterey Hotel and Spa on Del Monte Golf Course. [75] Braun, T., Becker, K. F., Voges, S., Thomas, T., Kahle, R., Bauer, J., ... & Lang, K. D. (2013). From wafer level to panel level mold embedding. In 2013 IEEE 63rd Electronic Components and Technology Conference, 28 May - 31 May. Las Vegas, Nevada, USA: The Cosmopolitan of Las Vegas. [76] Hartner, W., Fink, M., Haubner, G., Geissler, C., Lodermeyer, J., Niessner, M., ... & Wojnowski, M. (2019). Reliability and performance of wafer level fan out package for automotive radar. In 2019 International Wafer Level Packaging Conference, 22 Oct - 24 Oct. San Jose, CA, USA: DoubleTree by Hilton San Jose [77] Kuo, K. H., Chiang, J., Chang, K., Shu, J., Chien, F. L., Wang, K., & Lee, R. (2016). Studying the effect of stackup structure of large die size fan-in wafer level package at 0.35 mm pitch with varying ball alloy to enhance board level reliability performance. In 2016 IEEE 66th Electronic Components and Technology Conference, 31 May – 3 Jun. Las Vegas, NV, USA: The Cosmopolitan of Las Vegas. [78] Chou, C. Y., Hung, T. Y., Yang, S. Y., Yew, M. C., Yang, W. K., & Chiang, K. N. (2008). Solder joint and trace line failure simulation and experimental validation of Fan-Out type wafer level packaging subjected to drop impact. Microelectronics Reliability, Volume 48, Issue 8-9, 1149-1154. [79] Chiu, T. C., & Yeh, E. Y. (2018). Warpage simulation for the reconstituted wafer used in Fan-Out wafer level packaging. Microelectronics Reliability, Volume 80, Issue 14-23. [80] Su, M., Cao, L., Lin, T., Chen, F., Li, J., Chen, C., & Tian, G. (2018). Warpage simulation and experimental verification for 320 mm× 320 mm panel level Fan-Out packaging based on die-first process. Microelectronics Reliability, Volume 83, Issue 29-38. [81] Huang, J., He, Z., Li, C., Zhao, L., & Lu, X. (2021). Heat dissipation optimization and prediction for three-dimensional Fan-Out package. International Journal of Thermal Sciences, Volume 166, Issue 106983. [82] Lujan, A. P. (2017). Yield comparison of die-first face-down and die-last Fan-Out wafer level packaging. In 2017 IEEE 67th Electronic Components and Technology Conferenc, 30 May – 2 Jun. Orlando, FL, USA: Walt Disney World Swan and Dolphin Resort. [83] Hu, G., Kim, Y. G., & Judy, L. (2011). Micromechanical analysis of copper trace in printed circuit boards. Microelectronics Reliability, Volume 51, Issue 2, 416-424. [84] van Soestbergen, M., Jiang, Q., Zaal, J. J. M., Roucou, R., & Dasgupta, A. (2021). Semi-empirical law for fatigue resistance of redistribution layers in chip-scale packages. Microelectronics Reliability, Volume 120, Issue 114096. [85] Pan, C. T., Wu, C. N., Mao, S. W., Wang, S. Y., Ju, S. P., Wu, J. D., ... & Chen, W. F. (2020). Adhesion–delamination phenomena at the interfaces of the dielectric layer. Results in Physics, Volume 18, Issue 103249. [86] Chung, S., Chen, Z. C., Chen, Y. Z., Chu, Y. C., Chen, K. J., Tseng, C. H., & Chen, C. (2016). Electroplated Nano Twinned Copper For Wafer Level Packaging. In 13th International Wafer Level Packaging Conference,18 Oct – 20 Oct. San Jose, CA, USA: Double Tree by Hilton San Jose. [87] McCaslin, L. O., Yoon, S., Kim, H., & Sitaraman, S. K. (2009). Methodology for modeling substrate warpage using copper trace pattern implementation. IEEE transactions on advanced packaging, Volume 32, Issue 4, 740-745. [88] Woehrmann, M., Keller, A., Fritzsch, T., Schiffer, M., Gollhardt, A., Walter, H., ... & Lang, K. D. (2020). Reliability Investigation of Ultra Fine Line, Multi-Layer Copper Routing for Fan-Out Packaging Using a Newly Designed Micro Tensile Test Method. In 2020 IEEE 70th Electronic Components and Technology Conference, 03 Jun - 30 Jun. Orlando, FL, USA: Online. [89] Tee, T. Y., Long, B. T., Anderson, R., Hun, S. N., Low, J. H., Khoo, C. P., ... & Rogers, B. (2008). Advanced analysis of WLCSP copper interconnect reliability under board level drop test. In 2008 10th Electronics Packaging Technology Conference, 9 Dec – 12 Dec. Singapore: Grand Copthorne Waterfront Hotel. [90] Roucou, R., Rongen, R. T. H., Zaal, J. M., & van der Wel, P. J. (2018). Effect of PCB stack-up on Temperature Cycling Reliability of WLCSP. In 2018 7th Electronic System-Integration Technology Conference, 18 Sep – 21 Sep. Dresden, Germany: The Westin Bellevue Dresden. [91] Ong, E. E., Abdullah, M. Z., Loh, W. K., Ooi, C. K., & Chan, R. (2013). FSI implications of EMC rheological properties to 3D IC with TSV structures during plastic encapsulation process. Microelectronics Reliability, Volume 53, Issue 4, 600-611. [92] Xiong, Z. Y., Wang, Z. D., Li, Z. F., & Chang, R. N. (2008). Micromechanism of deformation in EMC laminates. Materials Science and Engineering: A, Volume 496, Issue 1-2, 323-328. [93] Noijen, S., Engelen, R., Martens, J., Opran, A., Van der Sluis, O., & Van Silfhout, R. (2010). Prediction of the epoxy moulding compound aging effect on package reliability. Microelectronics Reliability, Volume 50, Issue 7, 917-922. [94] Rongen, K., Mavinkurve, A., Chen, M., van Der Wel, P. J., Swartjes, F. H. M., & Rongen, R. T. (2015). Moisture absorption and desorption in wafer level chip scale packages. Microelectronics Reliability, Volume 55, Issue 9-10, 1872-1876. [95] Liu, C. P., Liu, Y. F., Li, C. H., Cheng, H. C., Kung, Y. C., & Lin, J. Y. (2012). A novel decapsulation technique for failure analysis of epoxy molded IC packages with Cu wire bonds. Microelectronics Reliability, Volume 52, Issue 4, 725-734. [96] Kwatra, A., Samet, D., Rambhatla, V. T., & Sitaraman, S. K. (2020). Effect of temperature and humidity conditioning on copper leadframe/mold compound interfacial delamination. Microelectronics Reliability, Volume 111, Issue 113647. [97] Srikanth, N., Chan, L., & Vath III, C. J. (2006). Adhesion improvement of EMC–leadframe interface using brown oxide promoters. Thin Solid Films, Volume 504, Issue 1-2, 397-400. [98] Inamdar, A., Yang, Y. H., Prisacaru, A., Gromala, P., & Han, B. (2021). High temperature aging of epoxy-based molding compound and its effect on mechanical behavior of molded electronic package. Polymer Degradation and Stability, Volume 188, Issue 109572. [99] Duo, L., Zhang, Z., Zheng, K., Wang, D., Xu, C., & Xia, Y. (2020). Perhydropolysilazane derived SiON interfacial layer for Cu/epoxy molding compound composite. Surface and Coatings Technology, Volume 391, Issue 125703. [100] Lu, W. H., Lin, J. H., & Chou, C. S. (2016). Influence of die-shift-distance of overhang dies on residual thermal shear stress in 5-chip SiP after EMC curing. Materials & Design, Volume 92, Issue 512-521. [101] Hu, G., Luan, J. E., & Chew, S. (2009). Characterization of chemical cure shrinkage of epoxy molding compound with application to warpage analysis. Journal of electronic packaging, Volume 131, Issue 1. [102] Liu, Y. L., Lin, Y. L., Chen, C. P., & Jeng, R. J. (2003). Preparation of epoxy resin/silica hybrid composites for epoxy molding compounds. Journal of applied polymer science, Volume 90, Issue 14, 4047-4053. [103] Nordt, S., Pasch, H., & Radke, W. (2010). Method development for epoxy resin analysis. Microsystem technologies, Volume 16, Issue 8, 1347-1351. [104] Cheng, H. C., & Liu, Y. C. (2020). Warpage characterization of molded wafer for Fan-Out wafer-level packaging. Journal of Electronic Packaging, Volume 142, Issue 1, 011004. [105] Sun, J., Qin, F., Chen, P., & An, T. (2016). A predictive model of grinding force in silicon wafer self-rotating grinding. International Journal of Machine Tools and Manufacture, Volume 109, Issue 74-86. [106] Hou, F., Lin, T., Cao, L., Liu, F., Li, J., Fan, X., & Zhang, G. Q. (2017). Experimental verification and optimization analysis of warpage for panel-level Fan-Out package. IEEE Transactions on Components, Packaging and Manufacturing Technology, Volume 7, Issue 10, 1721-1728. [107] 原著Neter Kutner Nachtsheim Wasserman,編譯 陳立信,”實驗設計Applied Linear Statistical Models—Study Designs”,臺北,華泰文化事業公司,2000.3,初版 [108] 陳順宇,”迴歸分析”,臺北,華泰書局,1997.3,初版 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |