Responsive image
博碩士論文 etd-0702121-130032 詳細資訊
Title page for etd-0702121-130032
論文名稱
Title
零售智能客服系統之開發研究-以3C產品售後客服為例
A Research on the Design of Chatbot for Retailing Services: the Case of 3C Product After Sales Service
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2021-07-22
繳交日期
Date of Submission
2021-08-02
關鍵字
Keywords
聊天機器人、RASA、零售業、智能客服、易用性
Chatbot, RASA, Retail, Smart Customer Service, Usability
統計
Statistics
本論文已被瀏覽 547 次,被下載 16
The thesis/dissertation has been browsed 547 times, has been downloaded 16 times.
中文摘要
企業與客戶之間的關係除了商品購買之外,售後服務與客戶需求成為企業掌握客戶與保持良好關係的重要基礎,暢通的溝通管道成為資訊科技時代,企業積極發展的需求之一。伴隨著人工智慧科技的發展與深度學習演算法的出現,讓自然語言處理技術更近一步發展,透過機器的自主學習能力強化機器對語意理解的能力,讓機器人更加擬人化、可處理更複雜之問題。雖然國內在聊天機器人已有許多應用,但在零售業使用聊天機器人的還是非常稀少。
而本論文使用RASA機器學習框架,建置名為智能客服小J的聊天機器人,並應用於零售業電腦硬體設備之售後服務。利用自然語言處理技術Jieba、TF-IDF等工具,進行斷詞處理、關鍵字擷取與詞向量的訓練,建構出零售業領域的語言模型,最終透過RASA NLU模組與RASA Core模組呈現智能客服小J系統。
最後以易用性測試進行系統實驗與半結構性訪談,並以系統易用性量表(SUS)、聊天機器人易用性調查問卷(CUQ)、使用者經驗調查問卷(UEQ)三個指標評估智能客服小J。實驗結果,智能客服小J在SUS、CUQ與UEQ的得分都很好,並受到具有零售背景使用者之認可,表示聊天機器人技術應用於零售業智能客服之可行性極高。
Abstract
Purchase of goods, after-sales services, and customer need integration are critical building blocks for good customer-enterprise relationships. In the current era dominated by information technology, active development is crucial in enterprises in order to establish a smooth communication channel with the customers. The emergence of artificial intelligence and deep learning algorithms has greatly improve natural language processing, which subsequently allows robots to be more anthropomorphic and capable of handling complex problems. In line with this, although there are many applications of chatbots in Taiwan, the use of chatbot in the retail industry is still rare.
In this thesis, we used the RASA© (Rasa Technologies, Inc., 2021) Conversational AI framework to build a chatbot, named Assistant-J, for the after-sales service of computer hardware devices in the retail industry. We used various natural language processing techniques, including Jieba, TF-IDF, Word2Vec, and Bert to construct a language model for the retail industry training processes. The intelligent customer service system Assistant-J was built through the RASA NLU module and RASA Core module.
We used the System Usability Scale (SUS), Chatbot Usability Questionnaire (CUQ), and User Experience Questionnaire (UEQ) metrics to evaluate Assistant-J. Results of the evaluation showed that Assistant-J satisfaction scores are high and has high acceptability from users with retail background. These results demonstrate the feasibility of applying chatbot technology to intelligent customer service in the retail industry.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 viii
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 章節安排 3
第二章 文獻探討 4
第一節 聊天機器人 4
第二節 聊天機器人在零售業中的應用 6
第三節 聊天機器人的易用性設計 8
第三章 研究方法 12
第一節 研究架構 12
第二節 資料集 13
第三節 意圖與實體設計 14
第四節 自然語言處理 15
第五節 資料格式 18
第四章 系統架構與設計 20
第一節 系統架構 20
第二節 系統設計 27
第三節 系統呈現 29
第四節 小結 32
第五章 系統實驗 33
第一節 聊天機器人評估 33
第二節 實驗結果與分析 34
第六章 結論與未來展望 45
第七章 參考文獻 46
參考文獻 References
84 Chatbot /Conversational AI Statistics: Market Size, Adoption. (2020, October 2). https://research.aimultiple.com/chatbot-stats/
Bangor, A. (2009). Determining What Individual SUS Scores Mean: Adding an Adjective Rating Scale. 4(3), 10.
Bocklisch, T., Faulkner, J., Pawlowski, N., & Nichol, A. (2017). Rasa: Open Source Language Understanding and Dialogue Management. ArXiv:1712.05181 [Cs].http://arxiv.org/abs/1712.05181
Brooke, J. (1986). SUS - A quick and dirty usability scale. 8.
Bruno Marietto, M. das G., Aguiar, R. V., Barbosa, G. de O., Botelho, W. T.,Pimentel, E., Franca, R. dos S., & da Silva, V. L. (2013). Artificial Intelligence Markup Language: A Brief Tutorial. International Journal of Computer Science & Engineering Survey, 4(3), 1–20. https://doi.org/10.5121/ijcses.2013.4301
Bunk, T., Varshneya, D., Vlasov, V., & Nichol, A. (2020). DIET: Lightweight Language Understanding for Dialogue Systems. ArXiv:2004.09936 [Cs]. http://arxiv.org/abs/2004.09936
Cameron, G., Cameron, D. M., Megaw, G., Bond, R. B., Mulvenna, M., O’Neill, S. B., Armour, C., & McTear, M. (2018, July 1). Back to the Future: Lessons from Knowledge Engineering Methodologies for Chatbot Design and Development. Proceedings of the 32nd International BCS Human Computer Interaction Conference. https://doi.org/10.14236/ewic/HCI2018.153
Chowdhury, G. G. (2003). Natural Language Processing. 39.
Colby, K. M. (1975). Artificial paranoia: A computer simulation of paranoid process.
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural Language Processing (Almost) from Scratch. NATURAL LANGUAGE PROCESSING, 45.
Coucke, A., Saade, A., Ball, A., Bluche, T., Caulier, A., Leroy, D., Doumouro, C., Gisselbrecht, T., Caltagirone, F., Lavril, T., Primet, M., & Dureau, J. (2018). Snips Voice Platform: An embedded Spoken Language Understanding system for private-by-design voice interfaces. ArXiv:1805.10190 [Cs]. http://arxiv.org/abs/1805.10190
Cui, L., Huang, S., Wei, F., Tan, C., Duan, C., & Zhou, M. (2017). SuperAgent: A Customer Service Chatbot for E-commerce Websites. Proceedings of ACL 2017, System Demonstrations, 97–102. https://doi.org/10.18653/v1/P17-4017
Davenport, T., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48(1), 24–42. https://doi.org/10.1007/s11747-019-00696-0
De Cicco, R., Silva, S. C., & Alparone, F. R. (2020). Millennials’ attitude toward chatbots: An experimental study in a social relationship perspective. International Journal of Retail & Distribution Management, 48(11), 1213–1233. https://doi.org/10.1108/IJRDM-12-2019-0406
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805
Gao, J., Galley, M., & Li, L. (2019). Neural Approaches to Conversational AI. ArXiv:1809.08267 [Cs]. http://arxiv.org/abs/1809.08267
Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review, 61(4), 5–14. https://doi.org/10.1177/0008125619864925
Hemphill, C. T., Godfrey, J. J., & Doddington, G. R. (1990). The ATIS spoken language systems pilot corpus. Proceedings of the Workshop on Speech and Natural Language - HLT ’90, 96–101. https://doi.org/10.3115/116580.116613
Henderson, M., Thomson, B., & Young, S. (2013). Deep Neural Network Approach for the Dialog State Tracking Challenge. 5.
H&M integrates virtual assistant, live chat with Google services. (2020, October 7). Retail Dive. https://www.retaildive.com/news/hm-integrates-virtual-assistant-live-chat-with-google-services/586560/
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory.
Holmes, S., Moorhead, A., Bond, R., Zheng, H., Coates, V., & Mctear, M. (2019). Usability testing of a healthcare chatbot: Can we use conventional methods to assess conversational user interfaces? Proceedings of the 31st European Conference on Cognitive Ergonomics, 207–214. https://doi.org/10.1145/3335082.3335094
How chatbots can help reduce customer service costs by 30%. (2017, October 17). Watson Blog. https://www.ibm.com/blogs/watson/2017/10/how-chatbots-reduce-customer-service-costs-by-30-percent/
Kocabalil, A. B., Laranjo, L., & Coiera, E. (2018, July 1). Measuring User Experience in Conversational Interfaces: A Comparison of Six Questionnaires. Proceedings of the 32nd International BCS Human Computer Interaction Conference. https://doi.org/10.14236/ewic/HCI2018.21
Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., & Dyer, C. (2016). Neural Architectures for Named Entity Recognition. ArXiv:1603.01360 [Cs]. http://arxiv.org/abs/1603.01360
Lewis, J. R., & Sauro, J. (2018). Item Benchmarks for the System. 13(3), 11.
Lipton, Z. C., Li, X., Gao, J., Li, L., Ahmed, F., & Deng, L. (2018). BBQ-Networks: Efficient Exploration in Deep Reinforcement Learning for Task-Oriented Dialogue Systems. 8.
Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. Humans: The Impact of Artificial Intelligence Chatbot Disclosure on Customer Purchases. Marketing Science, mksc.2019.1192. https://doi.org/10.1287/mksc.2019.1192
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. 9.
Moore, R. J., Arar, R., Ren, G.-J., & Szymanski, M. H. (2017). Conversational UX Design. Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, 492–497. https://doi.org/10.1145/3027063.3027077
Moriuchi, E., Landers, V. M., Colton, D., & Hair, N. (2020). Engagement with chatbots versus augmented reality interactive technology in e-commerce. Journal of Strategic Marketing, 29:5, 375–389. https://doi.org/10.1080/0965254X.2020.1740766
Mrkšić, N., Séaghdha, D. Ó., Wen, T.-H., Thomson, B., & Young, S. (2017). Neural Belief Tracker: Data-Driven Dialogue State Tracking. ArXiv:1606.03777 [Cs]. http://arxiv.org/abs/1606.03777
Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. 9.
Pereira, J., & Díaz, O. (2018). A quality analysis of facebook messenger’s most popular chatbots. Proceedings of the 33rd Annual ACM Symposium on Applied Computing, 2144–2150. https://doi.org/10.1145/3167132.3167362
Przegalinska, A., Ciechanowski, L., Stroz, A., Gloor, P., & Mazurek, G. (2019). In bot we trust: A new methodology of chatbot performance measures. Business Horizons, 62(6), 785–797. https://doi.org/10.1016/j.bushor.2019.08.005
Retail—Transformation in the retail industry. (2016). I-SCOOP. https://www.i-scoop.eu/digital-transformation/retail-transformation-retail-industry/
Schrepp, M., Hinderks, A., & Thomaschewski, J. (2017). Construction of a Benchmark for the User Experience Questionnaire (UEQ). International Journal of Interactive Multimedia and Artificial Intelligence, 4(4), 40. https://doi.org/10.9781/ijimai.2017.445
Sutskever, I., Martens, J., & Hinton, G. (2011). Generating Text with Recurrent Neural Networks. 8.
Turing, A. M. (1950). I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind, LIX(236), 433–460. https://doi.org/10.1093/mind/LIX.236.433
Van Doorn, J., Mende, M., Noble, S. M., Hulland, J., Ostrom, A. L., Grewal, D., & Petersen, J. A. (2017). Domo Arigato Mr. Roboto: Emergence of Automated Social Presence in Organizational Frontlines and Customers’ Service Experiences. Journal of Service Research, 20(1), 43–58. https://doi.org/10.1177/1094670516679272
Vlasov, V., Mosig, J. E. M., & Nichol, A. (2020). Dialogue Transformers. ArXiv:1910.00486 [Cs]. http://arxiv.org/abs/1910.00486
Wallace, R. S. (2003). The Elements of AIML Style.
Weizenbaum, J. (1996). ELIZA--A Computer Program For the Study of Natural Language Communication Between Man and Machine. Communications of the ACM, 7.
Wen, T.-H., Vandyke, D., Mrksic, N., Gasic, M., Rojas-Barahona, L. M., Su, P.-H., Ultes, S., & Young, S. (2017). A Network-based End-to-End Trainable Task-oriented Dialogue System. ArXiv:1604.04562 [Cs, Stat]. http://arxiv.org/abs/1604.04562
Why Chatbots are Essential to Retail. (2020, March). https://www.juniperresearch.com/document-library/white-papers/why-chatbots-are-essential-to-retail
Zumstein, D., & Hundertmark, S. (2017). CHATBOTS – AN INTERACTIVE TECHNOLOGY FOR PERSONALIZED COMMUNICATION, TRANSACTIONS AND SERVICES. 15.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code