Responsive image
博碩士論文 etd-0714122-181858 詳細資訊
Title page for etd-0714122-181858
論文名稱
Title
利用主題模型對IoT專利資料之跨市場趨勢與競爭者分析
Using Topic Model on Patent Data to Identify Emerging Trends and Cross-Market Competitors Analysis in IoT Domain
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-07-18
繳交日期
Date of Submission
2022-08-14
關鍵字
Keywords
競爭者分析、新興科技分析、跨市場趨勢分析、主題模型、專利分析
Competitor Analysis, Emerging Technology Analysis, Topic Model, Cross-Market Trend Analysis, Patent Analysis
統計
Statistics
本論文已被瀏覽 423 次,被下載 2
The thesis/dissertation has been browsed 423 times, has been downloaded 2 times.
中文摘要
專利是保護公司核心業務專有技術的最重要方式之一,通過查看專利文件可以了解新技術開發和競爭對手的技術進步,幫助製定公司的專利布局。由於專利申請的地域性限制,使得跨國公司需要在不同的國家進行專利申請,另外加上文本的複雜性使得專利的分析需要花費許多時間,所以近年來開始使用文字探勘的方式加速專利資料的分析。透過專利分析,企業可以了解技術市場的變化,掌握未來新興技術的趨勢並為尋找潛在競爭對手奠定基礎。
在本論文中,我們專注在物聯網(IoT)領域,蒐集美國專利商標局(USPTO)、中國國家知識產權局 (CNPA)和德國專利商標局(DPMA)的專利資料, 比較使用隱含狄利克雷分佈(LDA)與專利分類(CPC)在專利分析結果的差異,並提出了一種找出新興技術的組合矩陣,最後進行公司競爭對手的識別。經過實驗分析,我們發現使用 LDA 模型可以更準確地識別競爭對手。
Abstract
Patents is one of the most important ways to protect the core technology of a company's services and products. By checking the patent documents, we are able to understand the development of new technology and the technological progress of competitors, which contribute to the formulation the patent layout of the company. Due to the geographical restriction of patent applications, multinational companies need to file patent applications in different countries, and the complexity of the text, usually in different languages, makes the analysis of patent more difficult and time-consuming. Through patent analysis, companies can understand the changes in the technology market, grasp the future trend of emerging technologies, and establish a foundation for finding potential competitors.
In our thesis, we focus on the Internet of Things (IoT) field and collect patent data from the United States Patent and Trademark Office (USPTO), German Patent and Trade Mark Office (DPMA), and China National Intellectual Property Administration (CNIPA). We compare the differences between the patent analysis results using Latent Dirichlet Allocation (LDA) and Cooperative Patent Classification (CPC). We also propose a technology portfolio matrix to identify emerging technologies and to identify the company's competitors. After the experimental analysis, we found that the LDA model can identify the competitors more accurately.
目次 Table of Contents
論文審定書……………………………………………………………………………... i
致謝…………………………………………………………………………………..… ii
摘要……………………………………………………………………………………. iii
Abstract……………………………………………………………………………….. iv
CHAPTER 1 - INTRODUCTION 1
CHAPTER 2 - RELATED WORKS 5
2.1. PATENT ANALYSIS 5
2.1.1. About Patent 5
2.1.2. Patent Data and their Analysis 6
2.2. EMERGING TECHNOLOGIES DEFINITION AND IDENTIFICATION 8
2.3. COMPETITOR DEFINITION AND IDENTIFICATION 10
CHAPTER 3 - DATA AND METHODOLOGY 13
3.1. DATA 13
3.2. METHODOLOGY 14
3.2.1. Data Preprocessing 15
3.2.2. Latent Dirichlet Allocation (LDA) 17
3.2.3. Emerging Topic Analysis 19
3.2.4. Competitor Analysis 20
CHAPTER 4 - EXPERIMENTS 24
4.1. DATA 24
4.2. PATENT FAMILIES 26
4.3. CPC 27
4.4. ASSIGNEES 29
4.5. TOPIC DISTRIBUTION OF EACH MARKET BY YEAR 33
4.6. ENTROPY OF CPC AND LDA 39
4.7. EMERGING TECHNOLOGY ANALYSIS 42
4.8. COMPETITOR ANALYSIS 53
4.9. EVALUATION 60
CHAPTER 5 - CONCLUSION 62
REFERENCES 64


參考文獻 References
Alkemade, F., & Suurs, R. A. (2012). Patterns of expectations for emerging sustainable technologies. Technological Forecasting and Social Change, 79(3), 448-456.
Bergen, M., & Peteraf, M. A. (2002). Competitor identification and competitor analysis: a broad‐based managerial approach. Managerial and decision economics, 23(4‐5), 157-169.
Blei, D. M., & Lafferty, J. D. (2009). Topic models. In Text mining (pp. 101-124). Chapman and Hall/CRC.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. the Journal of machine Learning research, 3, 993-1022.
Bonino, D., Ciaramella, A., & Corno, F. (2010). Review of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informatics. World Patent Information, 32(1), 30-38.
Brockhoff, K. (1991). Competitor technology intelligence in German companies. Industrial marketing management, 20(2), 91-98.
Callon, M., Courtial, J.-P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social science information, 22(2), 191-235.
Campbell, R. S. (1983). Patent trends as a technological forecasting tool. World Patent Information, 5(3), 137-143.
Chen, M.-J. (1996). Competitor analysis and interfirm rivalry: Toward a theoretical integration. Academy of management review, 21(1), 100-134.
Chen, Y.-S., & Chen, B.-Y. (2011). Utilizing patent analysis to explore the cooperative competition relationship of the two LED companies: Nichia and Osram. Technological Forecasting and Social Change, 78(2), 294-302.
Day, G. S., & Schoemaker, P. J. (2000). Avoiding the pitfalls of emerging technologies. California management review, 42(2), 8-33.
De Rassenfosse, G., Dernis, H., Guellec, D., Picci, L., & de la Potterie, B. v. P. (2013). The worldwide count of priority patents: A new indicator of inventive activity. Research Policy, 42(3), 720-737.
Dechezleprêtre, A., Ménière, Y., & Mohnen, M. (2017). International patent families: from application strategies to statistical indicators. Scientometrics, 111(2), 793.
Engelsman, E. C., & van Raan, A. F. (1994). A patent-based cartography of technology. Research Policy, 23(1), 1-26.
Ernst, H. (2003). Patent information for strategic technology management. World Patent Information, 25(3), 233-242.
Furukawa, T., Mori, K., Arino, K., Hayashi, K., & Shirakawa, N. (2015). Identifying the evolutionary process of emerging technologies: A chronological network analysis of World Wide Web conference sessions. Technological Forecasting and Social Change, 91, 280-294.
Grant, R. M. (1991). The resource-based theory of competitive advantage: implications for strategy formulation. California management review, 33(3), 114-135.
Jeong, B., & Yoon, J. (2017). Competitive intelligence analysis of augmented reality technology using patent information. Sustainability, 9(4), 497.
Joung, J., & Kim, K. (2017). Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data. Technological Forecasting and Social Change, 114, 281-292.
Kronemeyer, L. L., Eilers, K., Wustmans, M., & Moehrle, M. G. (2020). Monitoring Competitors’ Innovation Activities: Analyzing the Competitive Patent Landscape Based on Semantic Anchor Points. IEEE Transactions on Engineering Management.
Lee, C., Kwon, O., Kim, M., & Kwon, D. (2018). Early identification of emerging technologies: A machine learning approach using multiple patent indicators. Technological Forecasting and Social Change, 127, 291-303.
Lucio‐Arias, D., & Leydesdorff, L. (2009). An indicator of research front activity: Measuring intellectual organization as uncertainty reduction in document sets. Journal of the American Society for information Science and Technology, 60(12), 2488-2498.
Martínez, C. (2011). Patent families: When do different definitions really matter? Scientometrics, 86(1), 39-63.
Melin, G., & Persson, O. (1996). Studying research collaboration using co-authorships. Scientometrics, 36(3), 363-377.
Morrison, W. M. (2018). China-US Trade Issues.
Niemann, H., Moehrle, M. G., & Frischkorn, J. (2017). Use of a new patent text-mining and visualization method for identifying patenting patterns over time: Concept, method and test application. Technological Forecasting and Social Change, 115, 210-220.
Peteraf, M. A., & Bergen, M. E. (2003). Scanning dynamic competitive landscapes: a market‐based and resource‐based framework. Strategic management journal, 24(10), 1027-1041.
Porter, A. L., Roessner, J. D., Jin, X.-Y., & Newman, N. C. (2002). Measuring national ‘emerging technology’capabilities. Science and Public Policy, 29(3), 189-200.
Rotolo, D., Hicks, D., & Martin, B. R. (2015). What is an emerging technology? Research Policy, 44(10), 1827-1843.
Shih, M.-J., Liu, D.-R., & Hsu, M.-L. (2010). Discovering competitive intelligence by mining changes in patent trends. Expert Systems with Applications, 37(4), 2882-2890.
Small, H. (1973). Co‐citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for information Science, 24(4), 265-269.
Stirling, A. (2007). Risk, precaution and science: towards a more constructive policy debate: talking point on the precautionary principle. EMBO reports, 8(4), 309-315.
Surie, G. (2013). Innovating via emergent technology and distributed organization: A case of biofuel production in India. Technological Forecasting and Social Change, 80(2), 253-266.
Tang, J., Wang, B., Yang, Y., Hu, P., Zhao, Y., Yan, X., Gao, B., Huang, M., Xu, P., & Li, W. (2012). Patentminer: topic-driven patent analysis and mining. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining,
Trappey, A., Trappey, C. V., & Hsieh, A. (2021). An intelligent patent recommender adopting machine learning approach for natural language processing: A case study for smart machinery technology mining. Technological Forecasting and Social Change, 164, 120511.
Trappey, A. J., Trappey, C. V., Fan, C.-Y., Hsu, A. P., Li, X.-K., & Lee, I. J. (2017). IoT patent roadmap for smart logistic service provision in the context of Industry 4.0. Journal of the Chinese Institute of Engineers, 40(7), 593-602.
Trappey, A. J., Trappey, C. V., Govindarajan, U. H., Chuang, A. C., & Sun, J. J. (2017). A review of essential standards and patent landscapes for the Internet of Things: A key enabler for Industry 4.0. Advanced Engineering Informatics, 33, 208-229.
Tseng, Y.-H., Lin, C.-J., & Lin, Y.-I. (2007). Text mining techniques for patent analysis. Information processing & management, 43(5), 1216-1247.
Venugopalan, S., & Rai, V. (2015). Topic based classification and pattern identification in patents. Technological Forecasting and Social Change, 94, 236-250.
Wang, B., Liu, S., Ding, K., Liu, Z., & Xu, J. (2014). Identifying technological topics and institution-topic distribution probability for patent competitive intelligence analysis: a case study in LTE technology. Scientometrics, 101(1), 685-704.
Wang, J., & Hsu, C.-C. (2020). A topic-based patent analytics approach for exploring technological trends in smart manufacturing. Journal of Manufacturing Technology Management.
Wang, Y., Richard, R., & McDonald, D. (2020). Competitive Analysis with Graph Embedding on Patent Networks. 2020 IEEE 22nd Conference on Business Informatics (CBI),
World Intellectual Property Organization. (2021). World Intellectual Property Indicators 2021.
Wu, L., Zhu, H., Chen, H., & Roco, M. C. (2019). Comparing nanotechnology landscapes in the US and China: a patent analysis perspective. Journal of nanoparticle research, 21(8), 1-20.
Xu, S., Hao, L., Yang, G., Lu, K., & An, X. (2021). A topic models based framework for detecting and forecasting emerging technologies. Technological Forecasting and Social Change, 162, 120366.
Yoon, J., Choi, S., & Kim, K. (2011). Invention property-function network analysis of patents: a case of silicon-based thin film solar cells. Scientometrics, 86(3), 687-703.
Zhang, L., Li, L., & Li, T. (2015). Patent mining: a survey. ACM Sigkdd Explorations Newsletter, 16(2), 1-19.
Zhang, Y., Zhang, G., Chen, H., Porter, A. L., Zhu, D., & Lu, J. (2016). Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research. Technological Forecasting and Social Change, 105, 179-191.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code