論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-01-19
校外 Off-campus:開放下載的時間 available 2025-01-19
論文名稱 Title |
使用自我注入鎖定雷達與廣義概似比檢驗法之在場感測 Occupancy Detection Using SIL Radars with Generalized Likelihood Ratio Test Statistic |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
79 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2022-01-06 |
繳交日期 Date of Submission |
2022-01-19 |
關鍵字 Keywords |
自我注入鎖定雷達、相位自我注入鎖定雷達、廣義概似比檢驗、序列分析、直流位移 self-injection-locked radar, phase- and self-injection-locked radar, generalized likelihood ratio test, sequential analysis, DC offset |
||
統計 Statistics |
本論文已被瀏覽 279 次,被下載 0 次 The thesis/dissertation has been browsed 279 times, has been downloaded 0 times. |
中文摘要 |
本論文使用基於廣義概似比的二種檢定統計量,分別為算術平均與幾何平均法以及訊號子空間特徵值法,應用在2.4 GHz ISM頻帶的自我注入鎖定雷達與相位自我注入雷達。論文中所提出之演算法運用於判斷環境中是否存在移動的物體,透過生理感測雷達以克服其他感測器高誤判率以及無法偵測靜止不動物體的缺點。 過程中,對於雷達的輸出訊號僅經過二種矩陣運算方法,分別為共變異數運算與特徵值分解,具有相當高的運算效率,且不受訊號直流位移影響。相對於傳統的方法需要二至三個週期以上的時間,文中所使用的演算法僅需要一個週期內的時間即可判斷。此外,結合序列分析方法與固定時間長度方法,使其具有更高的判斷準確率。在人體存在感測實驗中,感測距離為1至3公尺,當環境中存在物體時,判斷準確率最高可達97.85 %,且誤判率最低僅為1.21 %,而訊號平均週期約略為5秒時,所需判斷時間僅為1.05秒。 |
Abstract |
This thesis uses two different types of test statistics based on generalized likelihood ratio, respectively arithmetic to geometric mean method and signal-subspace eigenvalues method, which are applied to the self-injection-locked radar and phase- and self-injection-locked radar operated in the 2.4 GHz ISM band. The algorithms are used to determine whether there are moving objects in the environment or not. By using vital sign radars, we can overcome the disadvantages of high false alarm rates and failure to detect stationary subjects. In the signal process, we only use two matrix calculation methods to analyze output signals of vital sign radars, respectively covariance and eigendecomposition, which have perfect computational efficiency and are not affected by the DC offset of signals. Compared with traditional methods that require more than two or three periods, the detection algorithms used in the thesis only need within one period to determine. In addition, the algorithms combine the sequential analysis method and the fixed window length method to acquire higher detection accuracy. In the human sensing experiments, if it is known that whether there are moving objects in the environment or not, the highest detection accuracy is 97.85%, and the lowest false alarm rate is only 1.21%. When the average period is approximately 5 seconds, the detection only takes 1.05 seconds to make a decision. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 v 圖次 vii 表次 ix 第一章 序論 1 1.1 研究背景 1 1.2 偵測文獻探討 2 1.3雷達系統 5 1.3.1自我注入鎖定雷達 5 1.3.2相位自我注入鎖定雷達 7 1.4章節規劃 8 第二章 移動物體之判斷 9 2.1 假設檢驗 9 2.1.1 二元假設檢驗 9 2.1.2 最大概似估計 10 2.1.3 廣義概似比檢驗 11 2.1.4 操作特徵曲線圖 12 2.2 訊號處理流程 13 2.2.1 自我注入鎖定雷達 13 2.2.2 相位自我注入鎖定雷達 17 2.3 數學證明推導 20 2.3.1 雷達系統雜訊分析 20 2.3.2 算術平均與幾何平均法 21 2.3.3 訊號子空間特徵值法 24 第三章 雷達系統 26 3.1 整體架構 26 3.2 雷達系統雜訊 31 3.3 影響雷達因素分析 34 3.3.1 不同注入角度 39 3.3.2 不同距離 40 3.3.3 不同角度 42 3.3.4 雷達靈敏度 43 3.4 閥值選擇 44 第四章 人體存在感測實驗 54 4.1 實驗設置 54 4.2 移動物體結果分析 54 第五章 結論 63 參考文獻 64 |
參考文獻 References |
[1] 臺灣經濟部能源局[Online] Available: https://www.moeaboe.gov.tw/ECW/populace/home/Home.aspx?menu_id=798 [2] M. Levy, “Low-cost occupancy sensor saves energy”. [Online] Available: http://www.atmel.com/dyn/resources/prod_documents/mega88_3_04. pdf [3] Sensinova [Online] Available: https://www.sensinova.in/ [4] X-robot [Online] Available: http://www.x-robot.com.tw/portal/index.php/product/lego-45504 [5] The Energy Observer, “Occupancy sensors for lighting control,” [Online] Available: https://www.michigan.gov/documents/dleg/EO_12-07_218809_7.pdf [6] R.J Doviak and D.S Zmic, “Doppler radar and weather observations”, New York: Acadamic, 1993. [7] S. Guan , J. Rice, C. Li, Y. Li, and G. Wang, “Structural displacement measurements using DC coupled radar with active transponder,” Struct. Control Health Monitor., vol. 24, no. 4, Apr. 2017. [8] C. Gu, C. Li, J. Lin, J. Long, and J. Huangfu et al., “Instrument-based noncontact doppler radar vital sign detection system using heterodyne digital quadrature demodulation architecture,” IEEE Trans. Instrum. Meas., vol. 59, no. 6, pp. 1580– 1588, Jun. 2010. [9] H. -R. Chuang, H. -C. Kuo, F. -L. Lin, T. -H. Huang, and C. -S. Kuo et al., “60-GHz millimeter-wave life detection system (MLDS) for noncontact human vital-signal monitoring,” IEEE Sensors. J., vol. 12, no. 3, pp. 602–609, Mar. 2012. [10] C. Li and J. Lin, “Optimal carrier frequency of non-contact vital sign detectors,” IEEE Radio Wireless Symp. Dig., Long Beach, CA, Jan. 2007, pp. 281–284. [11] C. Chou, W. Lai, Y. Hsiao, and H. Chuang, “60-GHz CMOS Doppler radar sensor with integrated V-band power detector for clutter monitoring and automatic clutter-cancellation in noncontact vital-signs sensing,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1635–1643, Mar. 2018. [12] T. J. Kao, Y. Yan, T. Shen, A. Y. Chen, and J. Lin, “Design and analysis of a 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1649–1659, Apr. 2013. [13] E. Yavari, C. Song, V. Lubecke, and O. Boric-Lubecke, “System on-chip based Doppler radar occupancy sensor,” in Proc. IEEE Eng. Med. Biol. Soc. Conf., pp. 1913–1916, 2011. [14] O. Boric-Lubecke, V. M. Lubecke, A. Host-Madsen, D. Samardzija, and K. Cheung, “Doppler radar sensing of multiple subjects in single and multiple antenna systems,” in Proc. on Telecommunication in Modern Satellite, Cable and Broadcasting Services Conf., Nis, Serbia, Sept. 2005, vol. 1, pp. 7–11. [15] D. Samardzija, B. Park, O. Boric-Lubecke, V. Lubecke, and A. Host-Madsen et al., “Experimental evaluation of multiple antenna techniques for remote sensing of physiological motion,” IEEE MTT-S Int. Microw. Symp. Dig., Honolulu, HI, Jun. 2007, pp. 1735–1738. [16] Q. Zhou, J. Liu, A. Host-Madsen, O. Boric-Lubecke, and V. Lubecke, “Detection of multiple heartbeats using Doppler radar,” in Proc. IEEE Int. Acoust., Speech, Signal Process. Conf., Toulouse, France, May 2006, vol. II, pp. 1160–1163. [17] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, and J. Lin et al., “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112–4120, Dec. 2010. [18] Y. Xiao, J. Lin, Boric-Lubecke, and V. M. Lubecke, Frequency tuning technique for remote detection of heartbeat and respiration using lowpower double-sideband transmission in Ka-band,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 5, pp. 2023–2032, May 2006. [19] B.-K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 5, pp. 1073–1079, May 2007. [20] H. Gheidi and A. Banai, “An ultra-broadband direct demodulator for microwave FM receivers,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 2131–2139, Aug. 2011. [21] P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng, and P. Hsu, “Vital-sign detection Doppler radar based on phase locked self-injection oscillator,” IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012, pp. 1-3. [22] P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng, and P. Hsu, “Phase-and self-injection-locked radar for detecting vital signs with efficient elimination of dc offsets and null points,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 685–695, Jan. 2013. [23] Green David M. and Swets John A., “Signal detection theory and psychophysics,” New York, NY: Wiley, 1966. [24] Zweig, Mark H., Campbell and Gregory, “Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine”. Clinical Chemistry, vol. 39, pp.561–577, 1993. [25] Y. Yan, C. Li, and J. Lin, “Effects of I/Q mismatch on measurement of periodic movement using a Doppler radar sensor,” IEEE Radio and Wireless Symp. Dig., New Orleans, LA, Jan. 2010, pp. 196-199. [26] B. Johnson, “Thermal agitation of electricity in conductors,” Phys. Rev, vol. 32, pp.97-109, 1928. [27] H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys. Rev, vol. 32, pp.110-110, 1928. [28] John R. Barry, Edward A. Lee, and David G. Messerschmitt, “Digital Communications”, 2004. [29] Flicker noise, WIKI [Online] Available:https://en.wikipedia.org/wiki/Flicker_noise [30] Lemons, Don S., “An Introduction to Stochastic Processes in Physics,” The Johns Hopkins University Press, p. 34, 2002. [31] Horn Roger A. and Johnson Charles R., “Matrix Analysis,” 2nd ed. Cambridge University Press, 2013. [32] K. Hoffman and R. Kunze, “Linear Algebra,” 2nd ed., Prentice Hall Inc., Upper Saddle River, 1971. [33] S. Boyd and L. Vandenberghe, “Convex Optimization,” Cambridge University Press, 2004. [34] C. Li, J. Lin, “Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 567-570, Jun. 2008. [35] Y. Xiao, J. Lin, Boric-Lubecke, and V. M. Lubecke, “Frequency tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in Ka-band,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 5, pp. 2023–2032, May 2006. [36] Skolnik, Merrill. “Radar Handbook,”, McGraw Hill, 2008. [37] Hayman, Julius, “Multilevel thresholding for target tracking apparatus,” U.S. Patent No. 4,550,432, 1985. [38] T. Zhang, T. Boult, and R. Johnson, “Two thresholds are better than one,” Visual Surveillance Workshop, Minneapolis, MN, 2007. [39] I. Khan and P. Singh, “Double threshold feature detector for cooperative Spectrum Sensing in Cognitive Radio Networks”. IEEE India Conf., Pune, 2014, pp.1–5. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2025-01-19 校外 Off-campus:開放下載的時間 available 2025-01-19 您的 IP(校外) 位址是 3.15.6.140 現在時間是 2024-11-22 論文校外開放下載的時間是 2025-01-19 Your IP address is 3.15.6.140 The current date is 2024-11-22 This thesis will be available to you on 2025-01-19. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2025-01-19 |
QR Code |