Responsive image
博碩士論文 etd-0031123-093717 詳細資訊
Title page for etd-0031123-093717
論文名稱
Title
利用專利主題模型及創新指標進行財務預測之研究
Applying Topic Model on Patent Data As Innovative Indicators for Financial Forecasting
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-08-31
繳交日期
Date of Submission
2023-01-31
關鍵字
Keywords
主題模型、專利分析、財務指標、創新指標、產品生命週期、機器學習
Topic Modeling, Patent Analysis, Financial indicators, Innovative indicators, Technology life cycle, Machine Learning
統計
Statistics
本論文已被瀏覽 298 次,被下載 0
The thesis/dissertation has been browsed 298 times, has been downloaded 0 times.
中文摘要
公司技術隨著網路的快速發展,也讓企業更加重視其技術和創新能力。專利權不僅可以為公司帶來商業信譽的提升,甚至可以為公司帶來收入的增長。然而,專利的申請過程非常的繁瑣且嚴謹,也因此通常取專利權需花費3-5年的時間。專利文件組成的複雜性,也讓增加了文本分析的複雜性。為了協助公司準確地做出技術投資決策,本文透過從不同方面的專利信息和財務數據中提取的指標,從不同的角度研究專利權資訊對公司績效的影響,並採用機器學習方法來預測公司績效。且提出了一種新興創新指標,進行深入探討每個專利技術主題的技術生命週期對公司績效的影響,經過實驗分析,專利主題指標對公司績效有一定影響,且在成長期的專利主題屬於重要指標之一。
Abstract
With the rapid development of technology and the Internet, companies pay more attention to their technology and innovation capabilities. the patent can not only improve the company's business reputation but can even increase the company's revenue. However, the patent application process is very complicated and rigorous, so it usually takes 3-5 years to obtain a patent. The complexity of the composition of patent documents also increases the complexity of text analysis. To assist companies in making accurate technology investment decisions, this thesis uses indicators extracted from different aspects of patent information and financial ratios to study the impact of patent information on company performance from different perspectives and uses machine learning methods to predict company performance. And an innovation indicator is proposed to conduct an in-depth discussion on the impact of the life cycle of each patent topic on company performance. After experiments, the patent topic indicator has a certain impact on company performance, and the patent topic in the growth stage is one of the important indicators.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
CHAPTER 1 – Introduction 1
CHAPTER 2 – Related Works 3
2.1 Patent Analysis 3
2.2 Embedded Topic Model 4
2.3 Innovation Indicator 5
2.4 Indicators Impact on Firm Performance 7
2.5 Machine-Learning Ensemble Methods for Prediction 8
2.5.1 Random Forest 8
2.5.2 Boosting Method 8
2.5.2.1 AdaBoost 8
2.5.2.2 Gradient Boost 9
2.5.2.3 XGBoost 9
2.6 Technology Life Cycle 10
CHAPTER 3 – Methodology 12
3.1 Features Extraction 14
3.1.1 Features Related to Patent Meta Data 14
3.1.2 Features Related to Financial Ratio 16
3.1.3 Features Related to R&D Data 17
3.2 Predictors Related to Firm Performance 18
3.2.1 ROE (Return On Equity) 18
3.2.2 ROA (Return On Assets) 18
3.2.3 OCF (Operating Cash Flow) 18
3.3 ETM Model 19
3.4 Machine-Learning Ensemble Methods for Prediction 20
3.5 Model Evaluation 20
CHAPTER 4 – Experiments 22
4.1 Data Description Statistics 22
4.2 Indicator for Prediction Model 22
4.2.1 financial indicators & patent variables 22
4.2.2 Patent variables for ETM 23
4.3 Evaluation Metrics 27
4.4 The experiment results 27
4.4.1 Result of OCF for prediction 30
4.4.2 The Result of ROE for Prediction 32
4.4.3 The result of ROA for prediction 34
4.5 Using Technology Life cycle for Predictions 35
4.5.1 The Analysis of Logistic Curve 38
4.5.1.1 The TLC of Simulation/Optimization (Topic 1) 38
4.5.1.2 The TLC analysis of Storage Mechanism (Topic 3) 40
4.5.1.3 The TLC Analysis of Business System (Topic 7) 42
CHAPTER 5 – Discussion 44
CHAPTER 6 – Conclusions 49
Reference 51
參考文獻 References
Amin, S., & Aslam, S. (2017). Intellectual capital, innovation and firm performance of pharmaceuticals: A study of the London Stock Exchange. Journal of Information & Knowledge Management, 16(02), 1750017.
Andersen, B. (1999). The hunt for S-shaped growth paths in technological innovation: a patent study. Journal of evolutionary economics, 9(4), 487-526.
Archibugi, D., & Pianta, M. (1996). Innovation surveys and patents as technology indicators: the state of the art.
Baranyi, J., & Roberts, T. A. (1994). A dynamic approach to predicting bacterial growth in food. International journal of food microbiology, 23(3-4), 277-294.
Bedford, A., Ma, L., Ma, N., & Vojvoda, K. (2021). Patenting activity or innovative originality? Accounting & Finance, 61(3), 4191-4207.
Bettis, R. A., & Hitt, M. A. (1995). The new competitive landscape. Strategic management journal, 16(S1), 7-19.
Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American statistical Association, 112(518), 859-877.
Bunk, S., & Krestel, R. (2018). WELDA: Enhancing topic models by incorporating local word context. Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries,
Cardinal, L. B., & Hatfield, D. E. (2000). Internal knowledge generation: the research laboratory and innovative productivity in the pharmaceutical industry. Journal of Engineering and Technology Management, 17(3-4), 247-271.
Chan, L. K., Lakonishok, J., & Sougiannis, T. (2001). The stock market valuation of research and development expenditures. The Journal of finance, 56(6), 2431-2456.
Chen, H., Zhang, G., Zhu, D., & Lu, J. (2017). Topic-based technological forecasting based on patent data: A case study of Australian patents from 2000 to 2014. Technological Forecasting and Social Change, 119, 39-52.
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining,
Chengsheng, T., Huacheng, L., & Bing, X. (2017). AdaBoost typical Algorithm and its application research. MATEC Web of Conferences,
Choi, C., Kim, S., & Park, Y. (2007). A patent-based cross impact analysis for quantitative estimation of technological impact: The case of information and communication technology. Technological Forecasting and Social Change, 74(8), 1296-1314.
Damodaran, A. (2007). Return on capital (ROC), return on invested capital (ROIC) and return on equity (ROE): Measurement and implications. Return on Invested Capital (ROIC) and Return on Equity (ROE): Measurement and Implications (July 2007).
Dieng, A. B., Ruiz, F. J., & Blei, D. M. (2020). Topic modeling in embedding spaces. Transactions of the Association for Computational Linguistics, 8, 439-453.
Eberhart, A. C., Maxwell, W. F., & Siddique, A. R. (2004). An examination of long‐term abnormal stock returns and operating performance following R&D increases. The Journal of finance, 59(2), 623-650.
Elvers, D., Song, C. H., Steinbüchel, A., & Leker, J. (2016). Technology trends in biodegradable polymers: evidence from patent analysis. Polymer Reviews, 56(4), 584-606.
Ernst, H. (1997). The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry. Small business economics, 9(4), 361-381.
Fisher, J. C., & Pry, R. H. (1971). A simple substitution model of technological change. Technological Forecasting and Social Change, 3, 75-88.
Fitzgerald, T., Balsmeier, B., Fleming, L., & Manso, G. (2021). Innovation search strategy and predictable returns. Management Science, 67(2), 1109-1137.
Golembiewski, B., vom Stein, N., Sick, N., & Wiemhöfer, H.-D. (2015). Identifying trends in battery technologies with regard to electric mobility: evidence from patenting activities along and across the battery value chain. Journal of Cleaner Production, 87, 800-810.
Hall, B. H., Griliches, Z., & Hausman, J. A. (1984). Patents and R&D: Is there a lag? (0898-2937).
Haupt, R., Kloyer, M., & Lange, M. (2007). Patent indicators for the technology life cycle development. Research Policy, 36(3), 387-398.
Helfat, C. E., & Peteraf, M. A. (2003). The dynamic resource‐based view: Capability lifecycles. Strategic management journal, 24(10), 997-1010.
Herman, R., & Montroll, E. W. (1972). A manner of characterizing the development of countries. Proceedings of the National Academy of Sciences, 69(10), 3019-3023.
Hirshleifer, D., Hsu, P.-H., & Li, D. (2013). Innovative efficiency and stock returns. Journal of Financial Economics, 107(3), 632-654.
Hirshleifer, D., Hsu, P.-H., & Li, D. (2018). Innovative originality, profitability, and stock returns. The Review of Financial Studies, 31(7), 2553-2605.
Hirshleifer, D., Lim, S. S., & Teoh, S. H. (2011). Limited investor attention and stock market misreactions to accounting information. The Review of Asset Pricing Studies, 1(1), 35-73.
Hirshleifer, D., & Teoh, S. H. (2003). Limited attention, information disclosure, and financial reporting. Journal of accounting and economics, 36(1-3), 337-386.
Hitt, M. A., Hoskisson, R. E., & Kim, H. (1997). International diversification: Effects on innovation and firm performance in product-diversified firms. Academy of Management journal, 40(4), 767-798.
Hitt, M. A., Ireland, R. D., Camp, S. M., & Sexton, D. L. (2001). Strategic entrepreneurship: Entrepreneurial strategies for wealth creation. Strategic management journal, 22(6‐7), 479-491.
Hoffman, M. D., Blei, D. M., Wang, C., & Paisley, J. (2013). Stochastic variational inference. Journal of Machine Learning Research.
Hou, K., Xiong, W., & Peng, L. (2009). A tale of two anomalies: The implications of investor attention for price and earnings momentum. Available at SSRN 976394.
Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine learning, 37(2), 183-233.
Keya, K. N., Papanikolaou, Y., & Foulds, J. R. (2019). Neural embedding allocation: Distributed representations of topic models. arXiv preprint arXiv:1909.04702.
Kingma, D. P., & Welling, M. (2014). Stochastic gradient VB and the variational auto-encoder. Second International Conference on Learning Representations, ICLR,
Lai, K.-K., & Wu, S.-J. (2005). Using the patent co-citation approach to establish a new patent classification system. Information processing & management, 41(2), 313-330.
Lev, B., Sarath, B., & Sougiannis, T. (2005). R&D reporting biases and their consequences. Contemporary Accounting Research, 22(4), 977-1026.
Lev, B., & Sougiannis, T. (1996). The capitalization, amortization, and value-relevance of R&D. Journal of accounting and economics, 21(1), 107-138.
Lezama-Nicolás, R., Rodríguez-Salvador, M., Río-Belver, R., & Bildosola, I. (2018). A bibliometric method for assessing technological maturity: the case of additive manufacturing. Scientometrics, 117(3), 1425-1452.
Liao, T.-S., & Rice, J. (2010). Innovation investments, market engagement and financial performance: A study among Australian manufacturing SMEs. Research Policy, 39(1), 117-125.
Macdonald, S. (2004). When means become ends: considering the impact of patent strategy on innovation. Information Economics and Policy, 16(1), 135-158.
Nguyen, D. Q., Billingsley, R., Du, L., & Johnson, M. (2015). Improving topic models with latent feature word representations. Transactions of the Association for Computational Linguistics, 3, 299-313.
Norton, L. (1988). A Gompertzian model of human breast cancer growth. Cancer research, 48(24_Part_1), 7067-7071.
Peng, L., Xiong, W., & Bollerslev, T. (2007). Investor attention and time‐varying comovements. European Financial Management, 13(3), 394-422.
Porter, A. L., Garner, J., Carley, S. F., & Newman, N. C. (2019). Emergence scoring to identify frontier R&D topics and key players. Technological Forecasting and Social Change, 146, 628-643.
Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. International conference on machine learning,
Rotolo, D., Hicks, D., & Martin, B. R. (2015). What is an emerging technology? Research Policy, 44(10), 1827-1843.
Small, R. J., Bacmeister, J., Bailey, D., Baker, A., Bishop, S., Bryan, F., Caron, J., Dennis, J., Gent, P., & Hsu, H. m. (2014). A new synoptic scale resolving global climate simulation using the Community Earth System Model. Journal of Advances in Modeling Earth Systems, 6(4), 1065-1094.
Tang, J., Wang, B., Yang, Y., Hu, P., Zhao, Y., Yan, X., Gao, B., Huang, M., Xu, P., & Li, W. (2012). Patentminer: Topic-driven patent analysis and mining. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining,
Trajtenberg, M., Henderson, R., & Jaffe, A. (1997). University versus corporate patents: A window on the basicness of invention. Economics of Innovation and new technology, 5(1), 19-50.
Trappey, C. V., Wu, H.-Y., Taghaboni-Dutta, F., & Trappey, A. J. (2011). Using patent data for technology forecasting: China RFID patent analysis. Advanced Engineering Informatics, 25(1), 53-64.
Tseng, K.-A., Lin, C.-I., & Yen, S.-W. (2015). Contingencies of intellectual capitals and financial capital on value creation: Moderation of business cycles. Journal of Intellectual capital.
Tseng, Y.-H., Lin, C.-J., & Lin, Y.-I. (2007). Text mining techniques for patent analysis. Information processing & management, 43(5), 1216-1247.
Venugopalan, S., & Rai, V. (2015). Topic based classification and pattern identification in patents. Technological Forecasting and Social Change, 94, 236-250.
Wang, B., Liu, S., Ding, K., Liu, Z., & Xu, J. (2014). Identifying technological topics and institution-topic distribution probability for patent competitive intelligence analysis: a case study in LTE technology. Scientometrics, 101(1), 685-704.
Wang, J., & Hsu, C.-C. (2020). A topic-based patent analytics approach for exploring technological trends in smart manufacturing. Journal of Manufacturing Technology Management.
Yoon, J., Jeong, B., Lee, W. H., & Kim, J. (2018). Tracing the evolving trends in electronic skin (e-skin) technology using growth curve and technology position-based patent bibliometrics. IEEE Access, 6, 26530-26542.
Yoon, J., Park, Y., Kim, M., Lee, J., & Lee, D. (2014). Tracing evolving trends in printed electronics using patent information. Journal of nanoparticle research, 16(7), 1-15.
Yung, J. W., Meyer, P. S., & Ausubel, J. H. (1999). The Loglet Lab software: a tutorial. Technological Forecasting and Social Change, 61(3), 273-295.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-01-31
校外 Off-campus:開放下載的時間 available 2025-01-31

您的 IP(校外) 位址是 18.219.47.239
現在時間是 2024-11-21
論文校外開放下載的時間是 2025-01-31

Your IP address is 18.219.47.239
The current date is 2024-11-21
This thesis will be available to you on 2025-01-31.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2025-01-31

QR Code