論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
探討非同步線上付費課程平台持續使用意願 Investigating the intention to continuously use asynchronous online paid course platform |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
72 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2022-07-22 |
繳交日期 Date of Submission |
2023-03-21 |
關鍵字 Keywords |
持續使用意願、擬社會互動、整合科技接受模型、非同步線上付費課程平台、購買意願 parasocial interaction, Unified Theory of Acceptance and Use of Technology, asynchronous paid online course platform, continuance intention, purchase intention |
||
統計 Statistics |
本論文已被瀏覽 206 次,被下載 16 次 The thesis/dissertation has been browsed 206 times, has been downloaded 16 times. |
中文摘要 |
在競爭激烈的線上課程平台市場裡,許多平台業者利用各種方式吸引更多新學員註冊使用「非同步線上付費課程平台」,並增加用者線上學習對平台的忠誠度和黏著度。然而學習者也常因學習效果不如預期,造成多數的線上課程完成度偏低,減少持續使用平台的意願。此結果長期將不利於平台業者能保有持續獲利的一方。 根據先前研究指出,影響持續使用線上課程平台的意願,是取決於學習者對線上課程平台的科技接受度。此外,基於擬社會互動的理論上,在非同步線上課程裡,本研究認為講師與學員之間的「擬社會互動」將會提升學習者的學習效果,也會影響學員者在平台上的購買意願。因此本研究將利用「整合科技接受模型」融合「擬社會互動」來探討對非同步線上付費課程平台之「持續使用意願」的影響。 本研究經由線上問卷收集到443名有使用過非同步線上付費課程平台的台灣民眾。經實證結果顯示:(1)「績效期望」、「努力期望」、「社會影響」和「促進條件」皆對「持續使用意願」有正向影響 (2) 「擬社會互動」對於「績效期望」與「持續使用意願」之間的關係,則具有負向顯著效果。 |
Abstract |
In the highly competitive online course platform market, many online course platform operators have used various approaches to attract more new users to sign up for purchasing asynchronous online paid courses and to increase users’ long-term loyalty and stickiness of the platform. However, online learners often cannot complete most of their online courses because of poor learning outcome, which may lead to be less intention to continuously use the same online paid course platform. This would result in the platform operators not being able to retain a long-term profitability. According to previous research, the continuance intention of using an asynchronous online course platform depended on learners' technological acceptance of the online course platform. In addition, based on parasocial interactions (PSI) theory, this study argues that the PSI occurring between the online lecturer and learner would enhance learners' learning outcomes and influence learners' purchase intention on the online platforms. Thus, this study will apply the “unified theory of acceptance and use of technology” (UTAUT) model integrating parasocial interaction to investigate the impact of continuous intention of using asynchronous online paid course platforms. Online data were collected from 443 Taiwanese participants who have experience in using asynchronous online paid course platforms. The empirical results showed that: (1) performance expectancy, effort expectancy, social influence, and facilitating conditions significantly influence continuance intention with regard to using asynchronous paid online course platforms; and (2) parasocial interaction has a negative moderating effect on the relationship between performance expectancy and continuance intention. |
目次 Table of Contents |
Table of Content Thesis Validation Letter i 中文摘要 ii Abstract iii Table of Content iv Figure and Table Listings vi Chapter1: Introduction 1 1.1 Research Background 1 1.2 Research motivation 2 1.3 Research Gap & Research Question 4 1.4 Research Purpose 4 1.5 Research Structure 5 Chapter2: Literature Review & Hypotheses Development 6 2.1 Online course 6 2.2 Asynchronous online paid course platform 7 2.3 The Unified Theory of Acceptance and Use of Technology (UTAUT) 9 2.4 Parasocial Interaction 11 2.5 The UTAUT model and Continuance intention 14 2.6 Parasocial Interaction and UTAUT 16 Chapter3: Research Methodology 21 3.1 Participants and Procedure 21 3.2 Measure 21 3.3 Analysis 23 Chapter4: Results 27 4.1 Sample Descriptive 27 4.2 Correlation 29 4.3 Multiple Regression 31 Chapter5: Discussion and Conclusion 36 5.1 Research Implications 37 5.2 Limitations and suggestion for future research 39 References 42 Appendix1: Questionnaire 62 |
參考文獻 References |
AbuShanab, E., & Pearson, J. M. (2007). Internet banking in Jordan: The unified theory of acceptance and use of technology (UTAUT) perspective. Journal of Systems and information Technology. Ahmad, N., Omar, A., & Ramayah, T. (2010). Consumer lifestyles and online shopping continuance intention. Business strategy series. Aiken, L. S., West, S. G., & Reno, R. R. (1991). Multiple regression: Testing and interpreting interactions. sage. Ain, N., Kaur, K., & Waheed, M. (2016). The influence of learning value on learning management system use:An extension of UTAUT2. Information Development, 32(5), 1306-1321. https://doi.org/10.1177/0266666915597546 Al-Azawei, A., & Lundqvist, K. (2015). Learner Differences in Perceived Satisfaction of an Online Learning: an Extension to the Technology Acceptance Model in an Arabic Sample. Electronic Journal of e-Learning, 13, 408-426. Al-Gahtani, S. S., Hubona, G. S., & Wang, J. (2007). Information technology (IT) in Saudi Arabia: Culture and the acceptance and use of IT. Information & Management, 44(8), 681-691. https://doi.org/https://doi.org/10.1016/j.im.2007.09.002 Aydin, I. E. (2012). Relationship between affective learning, instructor attractiveness and instructor evaluation in videoconferencebased distance education courses. Turkish Online Journal of Educational Technology, 11, 247-252. Baek, Y. M., Bae, Y., & Jang, H. (2013). Social and parasocial relationships on social network sites and their differential relationships with users' psychological well-being. Cyberpsychol Behav Soc Netw, 16(7), 512-517. https://doi.org/10.1089/cyber.2012.0510 Beege, M., Schneider, S., Nebel, S., & Rey, G. D. (2017). Look into my eyes! Exploring the effect of addressing in educational videos. Learning and Instruction, 49, 113-120. https://doi.org/10.1016/j.learninstruc.2017.01.004 Berger, C. R., & Calabrese, R. J. (1974). Some explorations in initial interaction and beyond: Toward a developmental theory of interpersonal communication. Human Communication Research, 1(2), 99-112. Bhatiasevi, V. (2016). An extended UTAUT model to explain the adoption of mobile banking. Information Development, 32(4), 799-814. https://doi.org/10.1177/0266666915570764 Bhattacherjee, A. (2001). Understanding Information Systems Continuance- An Expectation-Confirmation Model. MIS Quarterly, 25(3), 351-370. https://doi.org/10.2307/3250921 Brownlow, R. (2015). Parasocial Activity: Nurse Learner's Experience of Entertainment Education RCN Education Forum national conference, Nottingham. https://www.rcn.org.uk/ Camilleri, M. A., & Camilleri, A. C. (2022). Learning from anywhere, anytime: Utilitarian motivations and facilitating conditions for mobile learning. Technology, Knowledge and Learning, 1-19. Cereijo, M. V. P. (2006). Attitude as predictor of success in online training. International Journal on E-Learning, 5(4), 623-639. Chang, Y.-T. (2018). 置入性行銷的「糖衣陷阱」— 探討擬社會互動與情節連結如何調節知覺真實性的中介效果 國立中山大學]. 高雄市. https://hdl.handle.net/11296/7nqc7m Chao, C.-M. (2019). Factors Determining the Behavioral Intention to Use Mobile Learning: An Application and Extension of the UTAUT Model [Original Research]. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.01652 Chen, M., Wang, X., Wang, J., Zuo, C., Tian, J., & Cui, Y. (2021). Factors Affecting College Students' Continuous Intention to Use Online Course Platform. SN Comput Sci, 2(2), 114. https://doi.org/10.1007/s42979-021-00498-8 Chen, M., Wang, X., Wang, J., Zuo, C., Tian, J., & Cui, Y. (2021). Factors Affecting College Students’ Continuous Intention to Use Online Course Platform. SN Computer Science, 2(2), 114. https://doi.org/10.1007/s42979-021-00498-8 Chiu, C.-M., & Wang, E. T. G. (2008). Understanding Web-based learning continuance intention: The role of subjective task value. Information & Management, 45(3), 194-201. https://doi.org/https://doi.org/10.1016/j.im.2008.02.003 Choi, S., Kim, I., Cha, K., Suh, Y.-K., & Kim, K.-H. (2019). Travelers’ parasocial interactions in online travel communities. Journal of Travel & Tourism Marketing, 36(8), 888-904. https://doi.org/10.1080/10548408.2019.1657053 Chou, S.-W., Min, H.-T., Chang, Y.-C., & Lin, C.-T. (2010). Understanding continuance intention of knowledge creation using extended expectation–confirmation theory: an empirical study of Taiwan and China online communities. Behaviour & Information Technology, 29(6), 557-570. https://doi.org/10.1080/01449290903401986 Clay, M. N., Rowland, S., & Packard, A. (2008). Improving Undergraduate Online Retention through Gated Advisement and Redundant Communication. Journal of College Student Retention: Research, Theory & Practice, 10(1), 93-102. https://doi.org/10.2190/CS.10.1.g Dibble, J. L., Hartmann, T., & Rosaen, S. F. (2016). Parasocial interaction and parasocial relationship: Conceptual clarification and a critical assessment of measures. Human Communication Research, 42(1), 21-44. Finn, A. N., Schrodt, P., Witt, P. L., Elledge, N., Jernberg, K. A., & Larson, L. M. (2009). A Meta-Analytical Review of Teacher Credibility and its Associations with Teacher Behaviors and Student Outcomes. Communication Education, 58(4), 516-537. https://doi.org/10.1080/03634520903131154 Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50. Frederick, E. L., Lim, C. H., Clavio, G., & Walsh, P. (2012). Why we follow: An examination of parasocial interaction and fan motivations for following athlete archetypes on Twitter. International journal of sport communication, 5(4), 481-502. Galikyan, I., & Admiraal, W. (2019). Students' engagement in asynchronous online discussion: The relationship between cognitive presence, learner prominence, and academic performance. The Internet and Higher Education, 43, 100692. https://doi.org/https://doi.org/10.1016/j.iheduc.2019.100692 García Botero, G., Questier, F., Cincinnato, S., He, T., & Zhu, C. (2018). Acceptance and usage of mobile assisted language learning by higher education students. Journal of Computing in Higher Education, 30(3), 426-451. https://doi.org/10.1007/s12528-018-9177-1 Giles, D. C. (2002). Parasocial Interaction: A Review of the Literature and a Model for Future Research. Media Psychology, 4(3), 279-305. https://doi.org/10.1207/s1532785xmep0403_04 Gosmire, D., Morrison, M., & Van Osdel, J. (2009). Perceptions of interactions in online courses. MERLOT Journal of Online Learning and Teaching, 5(4), 609-617. Gumelar, G., & Gilipanda, E. (2019). Teacher's Voice And Student Interpersonal Attractiveness. https://doi.org/10.4108/eai.20-1-2018.2281907 Hamzat, S. A., & Mabawonku, I. (2018). Influence of performance expectancy and facilitating conditions on use of digital library by engineering lecturers in universities in south-west, Nigeria. Library philosophy and practice, 1-16. Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the academy of marketing science, 43(1), 115-135. Hodges, C. B. (2008). Self‐efficacy in the context of online learning environments: A review of the literature and directions for research. Performance Improvement Quarterly, 20(3‐4), 7-25. Horton, D., & Richard Wohl, R. (1956). Mass communication and para-social interaction: Observations on intimacy at a distance. Psychiatry, 19(3), 215-229. Horton, D., & Wohl, R. R. (1956). Mass communication and para-social interaction; observations on intimacy at a distance. Psychiatry, 19(3), 215-229. https://doi.org/10.1080/00332747.1956.11023049 Hrastinski, S. (2008). Asynchronous and synchronous e-learning. Educause Quarterly, 31(4), 51-55. Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55. Huang, C.-H. (2021). Exploring the Continuous Usage Intention of Online Learning Platforms from the Perspective of Social Capital. Information, 12(4). https://doi.org/10.3390/info12040141 Huang, Y.-H. (2020). 以整合科技接受模式UTAUT,探討事故關係人使用交通事故資料網路系統申請資料之意圖研究---以高雄市為例 國立中山大學]. 高雄市. https://hdl.handle.net/11296/v3xu5j Jin, S.-A. A. (2011). Leveraging avatars in 3D virtual environments (Second Life) for interactive learning: the moderating role of the behavioral activation system vs. behavioral inhibition system and the mediating role of enjoyment. Interactive Learning Environments, 19(5), 467-486. https://doi.org/10.1080/10494820903484692 Jin, S. V. (2018). Interactive Effects of Instagram Foodies' Hashtagged #Foodporn and Peer Users' Eating Disorder on Eating Intention, Envy, Parasocial Interaction, and Online Friendship. Cyberpsychol Behav Soc Netw, 21(3), 157-167. https://doi.org/10.1089/cyber.2017.0476 Jittrapirom, P., Caiati, V., Feneri, A.-M., Ebrahimigharehbaghi, S., Alonso González, M. J., & Narayan, J. (2017). Mobility as a service: A critical review of definitions, assessments of schemes, and key challenges. Kauffman, H. (2015). A review of predictive factors of student success in and satisfaction with online learning. Research in Learning Technology, 23. Kim, D., Yoon, M., Jo, I.-H., & Branch, R. M. (2018). Learning analytics to support self-regulated learning in asynchronous online courses: A case study at a women's university in South Korea. Computers & Education, 127, 233-251. https://doi.org/https://doi.org/10.1016/j.compedu.2018.08.023 Klimmt, C., Hartmann, T., & Schramm, H. (2006). Parasocial interactions and relationships. Psychology of entertainment, 291-313. Korableva, O. N., Durand, T., Kalimullina, O. V., & Stepanova, I. (2019). Usability Testing of MOOC: Identifying User Interface Problems. ICEIS (2), Labrecque, L. I. (2014). Fostering Consumer–Brand Relationships in Social Media Environments: The Role of Parasocial Interaction. Journal of Interactive Marketing, 28(2), 134-148. https://doi.org/https://doi.org/10.1016/j.intmar.2013.12.003 Lee, J. E., & Watkins, B. (2016). YouTube vloggers' influence on consumer luxury brand perceptions and intentions. Journal of Business Research, 69(12), 5753-5760. Lee, M.-C. (2010). Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation–confirmation model. Computers & Education, 54(2), 506-516. https://doi.org/https://doi.org/10.1016/j.compedu.2009.09.002 Li, Y., & Zhao, M. (2021). A Study on the Influencing Factors of Continued Intention to Use MOOCs: UTAUT Model and CCC Moderating Effect. Front Psychol, 12, 528259. https://doi.org/10.3389/fpsyg.2021.528259 Lin, K.-M. (2011). e-Learning continuance intention: Moderating effects of user e-learning experience. Computers & Education, 56(2), 515-526. Liu, I.-F., Chen, M. C., Sun, Y. S., Wible, D., & Kuo, C.-H. (2010). Extending the TAM model to explore the factors that affect intention to use an online learning community. Computers & Education, 54(2), 600-610. MacCallum, R., Widaman, K., Preacher, K., & Hong, S. (2001). Sample Size in Factor Analysis: The Role of Model Error. Multivariate Behavioral Research, 36. https://doi.org/10.1207/S15327906MBR3604_06 MacCallum, R., Widaman, K., Zhang, S., & Hong, S. (1999). Sample Size in Factor Analysis. Psychological Methods - PSYCHOL METHODS, 4, 84-99. https://doi.org/10.1037/1082-989X.4.1.84 Marsh, B., & Mitchell, N. (2014). The role of video in teacher professional development. Teacher Development, 18(3), 403-417. Moyer-Gusé, E. (2008). Toward a Theory of Entertainment Persuasion: Explaining the Persuasive Effects of Entertainment-Education Messages. Communication Theory, 18(3), 407-425. https://doi.org/10.1111/j.1468-2885.2008.00328.x O’brien, R. M. (2007). A Caution Regarding Rules of Thumb for Variance Inflation Factors. Quality & Quantity, 41(5), 673-690. https://doi.org/10.1007/s11135-006-9018-6 Panigrahi, R., Srivastava, P. R., & Sharma, D. (2018). Online learning: Adoption, continuance, and learning outcome—A review of literature. International Journal of Information Management, 43, 1-14. Park, J., & Lennon, S. J. (2006). Psychological and environmental antecedents of impulse buying tendency in the multichannel shopping context. Journal of consumer Marketing, 23(2), 56-66. Parker, G. G., Van Alstyne, M. W., & Choudary, S. P. (2016). Platform Revolution: How Networked Markets Are Transforming the Economy and How to Make Them Work for You. W. W. Norton. https://books.google.com.tw/books?id=Bvd1CQAAQBAJ Peñarroja, V., Sánchez, J., Gamero, N., Orengo, V., & Zornoza, A. M. (2019). The influence of organisational facilitating conditions and technology acceptance factors on the effectiveness of virtual communities of practice. Behaviour & Information Technology, 38(8), 845-857. https://doi.org/10.1080/0144929X.2018.1564070 Pogue, L. L., & Ahyun, K. (2006). The Effect of Teacher Nonverbal Immediacy and Credibility on Student Motivation and Affective Learning. Communication Education, 55(3), 331-344. https://doi.org/10.1080/03634520600748623 Quintero Johnson, J. M., & Patnoe-Woodley, P. D. (2016). Exploring the Influence of Parasocial Relationships and Experiences on Radio Listeners’ Consumer Behaviors. Communication Research Reports, 33(1), 40-46. https://doi.org/10.1080/08824096.2015.1117440 Ramkumar, M., Schoenherr, T., Wagner, S. M., & Jenamani, M. (2019). Q-TAM: A quality technology acceptance model for predicting organizational buyers’ continuance intentions for e-procurement services. International Journal of Production Economics, 216, 333-348. Rocca, K. A., & McCroskey, J. C. (1999). The interrelationship of student ratings of instructors' immediacy, verbal aggressiveness, homophily, and interpersonal attraction. Communication Education, 48(4), 308-316. https://doi.org/10.1080/03634529909379181 Rong, K., Xiao, F., Zhang, X., & Wang, J. (2019). Platform strategies and user stickiness in the online video industry. Technological Forecasting and Social Change, 143, 249-259. https://doi.org/https://doi.org/10.1016/j.techfore.2019.01.023 Rubin, A. M., Perse, E. M., & Powell, R. A. (1985). Loneliness, parasocial interaction, and local television news viewing. Human Communication Research, 12(2), 155-180. https://doi.org/10.1111/j.1468-2958.1985.tb00071.x Rubin, R. B., & McHugh, M. P. (1987). Development of parasocial interaction relationships. Journal of Broadcasting & Electronic Media, 31(3), 279-292. https://doi.org/10.1080/08838158709386664 Schartel Dunn, S. G. (2017). Parasocial Interaction and Narrative Involvement as Predictors of Attitude Change. Western Journal of Communication, 82(1), 117-133. https://doi.org/10.1080/10570314.2017.1339230 Schnall, R., Higgins, T., Brown, W., Carballo-Dieguez, A., & Bakken, S. (2015). Trust, Perceived Risk, Perceived Ease of Use and Perceived Usefulness as Factors Related to mHealth Technology Use. Stud Health Technol Inform, 216, 467-471. Shao, Z. (2018). Examining the impact mechanism of social psychological motivations on individuals’ continuance intention of MOOCs: The moderating effect of gender. Internet Research. Singh, V., & Thurman, A. (2019). How Many Ways Can We Define Online Learning? A Systematic Literature Review of Definitions of Online Learning (1988-2018). American Journal of Distance Education, 33(4), 289-306. https://doi.org/10.1080/08923647.2019.1663082 Sokolova, K., & Kefi, H. (2020). Instagram and YouTube bloggers promote it, why should I buy? How credibility and parasocial interaction influence purchase intentions. Journal of Retailing and Consumer Services, 53. https://doi.org/10.1016/j.jretconser.2019.01.011 Sokolova, K., & Perez, C. (2021). You follow fitness influencers on YouTube. But do you actually exercise? How parasocial relationships, and watching fitness influencers, relate to intentions to exercise. Journal of Retailing and Consumer Services, 58. https://doi.org/10.1016/j.jretconser.2020.102276 Sood, S., & Rogers, E. M. (2010). Dimensions of Parasocial Interaction by Letter-Writers to a Popular Entertainment-Education Soap Opera in India. Journal of Broadcasting & Electronic Media, 44(3), 386-414. https://doi.org/10.1207/s15506878jobem4403_4 Su, B.-C., Wu, L.-W., Chang, Y.-Y.-C., & Hong, R.-H. (2021). Influencers on Social Media as References: Understanding the Importance of Parasocial Relationships. Sustainability, 13(19), 10919. https://www.mdpi.com/2071-1050/13/19/10919 Su, L., Li, Y., & Li, W. (2019). Understanding Consumers’ Purchase Intention for Online Paid Knowledge: A Customer Value Perspective. Sustainability, 11(19). https://doi.org/10.3390/su11195420 Šumak, B., Polancic, G., & Hericko, M. (2010, 10-16 Feb. 2010). An Empirical Study of Virtual Learning Environment Adoption Using UTAUT. 2010 Second International Conference on Mobile, Hybrid, and On-Line Learning, Swan, K. (2001). Virtual interaction: Design factors affecting student satisfaction and perceived learning in asynchronous online courses. Distance Education, 22(2), 306-331. https://doi.org/10.1080/0158791010220208 Taghizadeh, S. K., Rahman, S. A., Nikbin, D., Alam, M. M. D., Alexa, L., Ling Suan, C., & Taghizadeh, S. (2021). Factors influencing students’ continuance usage intention with online learning during the pandemic: a cross-country analysis. Behaviour & Information Technology, 1-20. https://doi.org/10.1080/0144929x.2021.1912181 Tan, P. J. B. (2013). Applying the UTAUT to Understand Factors Affecting the Use of English E-Learning Websites in Taiwan. SAGE Open, 3(4). https://doi.org/10.1177/2158244013503837 ter Huurne, M., Ronteltap, A., Corten, R., & Buskens, V. (2017). Antecedents of trust in the sharing economy: A systematic review. Journal of Consumer Behaviour, 16(6), 485-498. https://doi.org/10.1002/cb.1667 Thomas, T., Singh, L., & Gaffar, K. (2013). The utility of the UTAUT model in explaining mobile learning adoption in higher education in Guyana. International Journal of Education and Development using ICT, 9(3). Turner, J. R. (1993). Interpersonal and psychological predictors of parasocial interaction with different television performers. Communication Quarterly, 41(4), 443-453. https://doi.org/10.1080/01463379309369904 Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540 Venkatesh, V., Thong, J. Y. L., Chan, F. K. Y., Hu, P. J.-H., & Brown, S. A. (2011). Extending the two-stage information systems continuance model: incorporating UTAUT predictors and the role of context. Information Systems Journal, 21(6), 527-555. https://doi.org/10.1111/j.1365-2575.2011.00373.x Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412 Wan, L., Xie, S., & Shu, A. (2020). Toward an Understanding of University Students’ Continued Intention to Use MOOCs: When UTAUT Model Meets TTF Model. SAGE Open, 10(3), 2158244020941858. https://doi.org/10.1177/2158244020941858 Wang, Y. S., Wu, M. C., & Wang, H. Y. (2009). Investigating the determinants and age and gender differences in the acceptance of mobile learning. British journal of educational technology, 40(1), 92-118. Williams, M. D., Rana, N. P., Dwivedi, Y. K., & Lal, B. (2011). Is UTAUT really used or just cited for the sake of it? a systematic review of citations of UTAUT's originating article. 19th European Conference on Information Systems Helsinki, Finland. Wright, K. B. (2017). Researching Internet-Based Populations: Advantages and Disadvantages of Online Survey Research, Online Questionnaire Authoring Software Packages, and Web Survey Services. Journal of Computer-Mediated Communication, 10(3). https://doi.org/10.1111/j.1083-6101.2005.tb00259.x Xiang, L., Zheng, X., Lee, M. K., & Zhao, D. (2016). Exploring consumers’ impulse buying behavior on social commerce platform: The role of parasocial interaction. International Journal of Information Management, 36(3), 333-347. Yang, Y.-C. (2020). 網路口碑、信任、知覺價值與線上募資課程購買意願關係之研究 國立臺北科技大學]. 台北市. https://hdl.handle.net/11296/4tacwm Yu, L., Chen, Z., Yao, P., & Liu, H. (2021). A Study on the Factors Influencing Users’ Online Knowledge Paying-Behavior Based on the UTAUT Model. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1768-1790. https://www.mdpi.com/0718-1876/16/5/99 Yuan, C., Moon, H., Wang, S., Yu, X., & Kim, K. H. (2021). Study on the influencing of B2B parasocial relationship on repeat purchase intention in the online purchasing environment: An empirical study of B2B E-commerce platform. Industrial Marketing Management, 92, 101-110. https://doi.org/https://doi.org/10.1016/j.indmarman.2020.11.008 Zheng, X., Men, J., Xiang, L., & Yang, F. (2020). Role of technology attraction and parasocial interaction in social shopping websites. International Journal of Information Management, 51. https://doi.org/10.1016/j.ijinfomgt.2019.102043 Zhou, Shasha, Li, T., Yang, S., & Chen, Y. (2022). What drives consumers’ purchase intention of online paid knowledge? A stimulus-organism-response perspective. Electronic Commerce Research and Applications, 52, 101126. https://doi.org/https://doi.org/10.1016/j.elerap.2022.101126 Zhou, T. (2011). Understanding mobile Internet continuance usage from the perspectives of UTAUT and flow. Information Development, 27(3), 207-218. https://doi.org/10.1177/0266666911414596 Zhou, T. (2013). An empirical examination of continuance intention of mobile payment services. Decision Support Systems, 54(2), 1085-1091. https://doi.org/https://doi.org/10.1016/j.dss.2012.10.034 Website reference: Coursera. (n.d.). Coursera | Online Courses & Credentials From Top Educators. Join for Free. Retrieved April 30, 2022, from https://www.coursera.org/ edX. (n.d.). edX | Free Online Courses by Harvard, MIT, & more. Retrieved April 30, 2022, https://www.edx.org/ What do Generation Z and millennials expect from technology in education? | Pearson Blog. (2018, May 24). Pearson. Retrieved April 13, 2022, from https://www.pearson.com/ped-blogs/blogs/2018/05/generation-z-millennials-expect-technology-education.html Mao. (2020, November 27). 【獨家調查】台灣線上影音使用趨勢,逾半數民眾願意掏錢買「知識」!. 遠見雜誌 - 前進的動力. Retrieved January 20, 2022, from https://www.gvm.com.tw/article/76140 【社群與通訊消費者調查系列二】七成網友願意付費網路內容「專業知識技能」最熱門 比例成長15.1% 兩大付費動機:進修、娛樂【社群與通訊消費者調查系列二】七成網友願意付費網路內容「專業知識技能」最熱門 比例成長15.1% 兩大付費動機:進修、娛樂. (2021, November 29). Market Intelligence & Consulting Institute. Retrieved April 15, 2022, from https://mic.iii.org.tw/news.aspx?id=612&List=7 2020 Taiwan Network Information report. (2021). Taiwan Network Information Center. Retrieved January 20, 2022, from https://report.twnic.tw/2020/ |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |