Responsive image
博碩士論文 etd-0227123-185435 詳細資訊
Title page for etd-0227123-185435
論文名稱
Title
在5G eMBB與URLLC行動通訊網路使用疊加與穿孔的RB動態調整
Dynamic RB Allocations using Superposition and Puncturing for 5G eMBB and URLLC Mobile Communication Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2023-03-17
繳交日期
Date of Submission
2023-03-27
關鍵字
Keywords
5G行動通訊網路、eMBB、URLLC、VBR、疊加、穿孔
5G mobile communication networks, eMBB, URLLC, VBR, Superposition, Puncturing
統計
Statistics
本論文已被瀏覽 262 次,被下載 0
The thesis/dissertation has been browsed 262 times, has been downloaded 0 times.
中文摘要
5G行動通訊網路中的兩項應用分別為增強型行動寬頻(enhanced Mobile BroadBand, eMBB)與極高可靠與即時性通訊(Ultra-Reliable and Low-Latency Communications, URLLC),eMBB的應用有隨選視訊(Movie on Demand, MOD)的影音串流等,MOD的編碼位元率(Encoding Bit Rate, EBR)會隨著時間而改變,我們稱為變動位元率(Variable Bit Rate, VBR),MOD的VBR特性會導致eMBB使用者無法充分使用被分配到的子載波(Subcarriers),最終造成網路頻寬的浪費。另一方面,URLLC的應用有無人機與無人車等,此類應用需要即時性與高可靠度的傳送控制封包,當5G基地台已將所有的無線資源區塊(Resource Blocks, RBs)全部分配出去時,URLLC使用者可能會因為無法獲得RB而失去傳輸控制封包所需的即時性。為了解決上述問題,本論文在5G行動通訊網路中針對eMBB與URLLC使用者設計使用疊加與穿孔的動態資源分配演算法。疊加會依序(按照頻率的高低)將已連線的eMBB未使用的子載波做累加,累加得到的子載波能提供給新連線eMBB使用者作為其資料傳輸率(Data Rate, DR)需求的協商機制。另一方面,穿孔會針對eMBB使用者的一條或多條未使用的子載波,將其時槽(Time Slot)切割成多個微型時槽(Mini Slots),這些微型時槽可以提供新連線的URLLC使用者達成其即時性與高可靠度的傳送需求。我們使用Network Simulator 3 (NS-3)模擬本論文所提出的疊加與穿孔動態資源分配演算法,為了比較與分析,我們設計三種不同情形,分別為只使用疊加、只使用穿孔、同時使用疊加與穿孔,從模擬結果中,我們驗證了同時使用疊加與穿孔技術於5G行動通訊網路中可以得到三項效能的改進,分別為有效降低封包遺失率、大幅提高eMBB與URLLC使用者的平均Throughput、有效增加eMBB與URLLC新連線的使用者個數。
Abstract
Enhanced Mobile BroadBand (eMBB) and Ultra-Reliable and Low-Latency Communications (URLLC) are the two major applications of 5G mobile communication networks. eMBB applications include video streaming of Movie on Demand (MOD), where the Encoding Bit Rate (EBR) of a video stream changes over time. It is referred to as Variable Bit Rate (VBR). The VBR feature of MOD causes eMBB users unable to fully utilize the allocated subcarriers, which lead to the waste of network bandwidth. On the other hand, URLLC applications, such as UAVs and autonomous vehicles, require real-time and high reliability to transmit control packets. When a 5G base station has allocated all the resource blocks (RBs), URLLC users may lose the real-time capability to transmit control packets due to the unavailability of RBs. To solve these problems, this thesis designs a dynamic resource allocation algorithm using superposition and puncturing for eMBB and URLLC users in 5G mobile communication networks. Superposition will accumulate the unused subcarriers of the connected eMBB users in order (by frequencies). The accumulated subcarriers can be provided to the newly connected eMBB users as a negotiation mechanism for their data rate requirements. On the other hand, puncturing will cut an eMBB user's one or more unused subcarriers into multiple mini slots, which can provide the newly connected URLLC users to achieve their real-time and high-reliability transmission requirements. We use Network Simulator 3 (NS-3) to simulate the proposed algorithm. From the simulation results, we have verified that using both superposition and puncturing techniques in 5G mobile communication networks can improve three network performances, which are (1) effectively reducing the packet loss rate, (2) significantly increasing the average throughput of eMBB and URLLC users, and (3) effectively increasing the number of new eMBB and URLLC users connections.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 導論 1
1.1 研究動機 1
1.2 研究方法 1
1.3 章節介紹 3
第二章 5G的eMBB與URLLC 4
2.1 eMBB與URLLC的應用 4
2.1.1 eMBB的應用 4
2.1.2 URLLC的應用 6
2.2 5G行動通訊網路 7
2.2.1 5G OFDMA的架構 7
2.2.2 時槽與微型時槽 10
2.2.3 5G核心網路 11
2.3影音串流 14
2.3.1影片的編碼與壓縮 14
2.3.2 VBR的傳輸 16
2.4相關研究 17
第三章 疊加與穿孔技術 21
3.1 eMBB與URLLC的連線 21
3.1.1 eMBB的VBR Table設計 22
3.1.2 eMBB需求子載波個數的計算 25
3.1.3 eMBB使用者的連線時序 27
3.1.4 URLLC需求微型時槽個數的計算 28
3.1.5 URLLC使用者的連線時序 30
3.2 RASP演算法 30
3.2.1 MOD伺服器的流程 31
3.2.2 UE向gNB/5GC建立連線 32
3.2.3 疊加與穿孔的流程 33
第四章 實作與模擬結果 37
4.1 VBR Table的實作 37
4.1.1 在MOD伺服器的實作 37
4.1.2 在UE與5GC的實作 40
4.2 NS-3的模擬 41
4.2.1 模擬拓樸 41
4.2.2 程式架構 42
4.3 模擬結果與討論 55
4.3.1 模擬參數的設定 55
4.3.2 效能量測 56
4.3.3 模擬結果 58
第五章 結論與未來工作 73
5.1 結論 73
5.2 遭遇問題 74
5.3 未來工作 74
Reference 76
Acronyms 79
Index 81
參考文獻 References
[1] “Minimum Requirements Related to Technical Performance for IMT-2020 Radio Interface(s),” ITU-R, M. 2410, Sept. 2017.
[2] J. Navarro-Ortiz, P. Romero-Diaz, S. Sendra, P. Ameigeiras, J. J. Ramos-Munoz, and J. M. Lopez-Soler, “A Survey on 5G Usage Scenarios and Traffic Models,” IEEE Communications Surveys and Tutorials, vol. 22, no. 2, pp. 905-929, Feb. 2020.
[3] M. Tahir, M. H. Habaebi, M. Dabbagh, A. Mughees, A. Ahad, and K. I. Ahmed, “A Review on Application of Blockchain in 5G and Beyond Networks: Taxonomy, Field-Trials, Challenges and Opportunities,” IEEE Access, vol. 8, pp. 115876-115904, 2020.
[4] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Streaming Protocol (RTSP),” RFC 2326, Apr. 1998.
[5] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol for real-time applications,” RFC 1889, 1996.
[6] “New Services & Applications with 5G Ultra-Reliable Low Latency Communications,” 5G Americas, White Paper, Nov. 2018.
[7] R. Ali, Y. B. Zikria, A. K. Bashir, S. Garg, and H. S. Kim, “URLLC for 5G and Beyond: Requirements, Enabling Incumbent Technologies and Network Intelligence,” IEEE Access, vol. 9, pp. 67064-67095, 2021
[8] H. N. Qureshi, M. Manalastas, S. M. A. Zaidi, A. Imran, and M. O. Al Kalaa, “Service Level Agreements for 5G and Beyond: Overview, Challenges and Enablers of 5G-Healthcare Systems,” IEEE Access, vol. 9, pp. 1044-1061, 2021.
[9] A. Vergutz, G. Noubir, and M. Nogueira, “Reliability for Smart Healthcare: A Network Slicing Perspective,” IEEE Network, vol. 34, no. 4, pp. 91-97, Jul. 2020.
[10] B. S. Khan, S. Jangsher, A. Ahmed, and A. Al-Dweik, “URLLC and eMBB in 5G Industrial IoT: A Survey,” IEEE Open Journal of the Communications Society, vol. 3, pp. 1134-1163, 2022.
[11] G. Pocovi, H. Shariatmadari, G. Berardinelli, K. Pedersen, J. Steiner, and Z. Li, “Achieving Ultra-Reliable Low-Latency Communications: Challenges and Envisioned System Enhancements,” IEEE Network, vol. 32, no. 2, pp. 8-15, Mar. 2018.
[12] M. Centenaro, D. Laselva, J. Steiner, K. Pedersen, and P. Mogensen, “System-Level Study of Data Duplication Enhancements for 5G Downlink URLLC,” IEEE Access, vol. 8, pp. 565-578, 2020.
[13] “5G; NR; Physical channels and modulation,” 3GPP TS 38.211, Ver. 15.2.0, Release 15, Jul. 2018.
[14] “5G; NR; Physical layer procedures for data,” 3GPP TS 38.214, Ver. 15.3.0, Release 15, Oct. 2018.
[15] “5G; Study on New Radio (NR) access technology,” 3GPP TS 38.912, Ver. 15.0.0, Release 15, Sep. 2018.
[16] “5G; Procedures for the 5G System,” 3GPP TS 23.502, Ver. 15.2.0, Release 15, Jun. 2018.
[17] “5G; Non-Access-Stratum (NAS) protocol for 5G System (5GS); Stage 3,” 3GPP TS 24.501, Ver. 15.3.0, Release 15, May 2019.
[18] “Information technology — Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s — Part 2: Video,” ISO/IEC 11172-2, Aug. 1993.
[19] “Information technology — Generic coding of moving pictures and associated audio information — Part 2: Video,” ISO/IEC 13818-2, Oct. 2013.
[20] T. S. Mohamed Rasied, H. A. Mohd Ramli, and F. D. Abdul Rahman, “Dynamic Resource Block Allocation Techniques for Simultaneous EMBB and URLLC Traffic,” 2022 International Conference on Computer and Drone Applications (IConDA), Kuching, Malaysia, Nov. 2022.
[21] A. Karimi, K. I. Pedersen, N. H. Mahmood, G. Pocovi, and P. Mogensen, “Efficient Low Complexity Packet Scheduling Algorithm for Mixed URLLC and eMBB Traffic in 5G,” 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, Apr. 2019.
[22] A. M. Jaradat, M. İ. Sağlam, M. Kartal, and H. Arslan, “Dynamic-Structure Resource Block Allocation Based Scheduling for 5G Systems,” 2022 IEEE 95th Vehicular Technology Conference (VTC2022-Spring), Helsinki, Finland, Jun. 2022.
[23] N. K. M. Madi, M. M. Nasralla, and Z. M. Hanapi, “Delay-Based Resource Allocation with Fairness Guarantee and Minimal Loss for eMBB in 5G Heterogeneous Networks,” IEEE Access, vol. 10, pp. 75619-75636, 2022.
[24] M. Almekhlafi, M. Chraiti, M. A. Arfaoui, C. Assi, A. Ghrayeb, and A. Alloum, “A Downlink Puncturing Scheme for Simultaneous Transmission of URLLC and eMBB Traffic by Exploiting Data Similarity,” IEEE Transactions on Vehicular Technology, vol. 70, no. 12, pp. 13087-13100, Dec. 2021.
[25] Y. Huang, Y. T. Hou, and W. Lou, “DELUXE: A DL-Based Link Adaptation for URLLC/eMBB Multiplexing in 5G NR,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 1, pp. 143-162, Jan. 2022.
[26] A. Manzoor, S. M. A. Kazmi, S. R. Pandey, and C. S. Hong, “Contract-Based Scheduling of URLLC Packets in Incumbent EMBB Traffic,” IEEE Access, vol. 8, pp. 167516-167526, 2020.
[27] A. Esmaeily, K. Kralevska, and T. Mahmoodi, “Slicing Scheduling for Supporting Critical Traffic in Beyond 5G,” 2022 IEEE 19th Annual Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, Feb. 2022.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-03-27
校外 Off-campus:開放下載的時間 available 2028-03-27

您的 IP(校外) 位址是 18.224.66.196
現在時間是 2024-05-11
論文校外開放下載的時間是 2028-03-27

Your IP address is 18.224.66.196
The current date is 2024-05-11
This thesis will be available to you on 2028-03-27.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2028-03-27

QR Code