Responsive image
博碩士論文 etd-0424123-115213 詳細資訊
Title page for etd-0424123-115213
論文名稱
Title
針對即時與非即時性的感測器實作動態封包整合機制
Implementations of Dynamic Packet Integration Scheme for Real-Time and Non-Real-Time Sensors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2023-05-19
繳交日期
Date of Submission
2023-05-24
關鍵字
Keywords
感測器、即時性、非即時性、封包整合、ZedBoard
Sensors, Real-Time, Non-Real-Time, Packet Integration, ZedBoard
統計
Statistics
本論文已被瀏覽 181 次,被下載 0
The thesis/dissertation has been browsed 181 times, has been downloaded 0 times.
中文摘要
在物聯網(Internet of Things, IoT)中,感測器(Sensor)收集的資料類型可分為即時性(Real-Time, RT)與非即時性(Non-Real-Time, NRT),即時性資料必須在時間限制(Time Constraint)內抵達目的地,而非即時性資料則可以容許較大的延遲。大部分感測器所傳送封包的資料只有少量位元組(Byte),因此封包標頭(Header)會造成網路多餘的負載(Overhead)。封包整合技術可以用來減少網路的負載,但過去研究都沒有區別封包的即時性與非即時性就將封包做整合,如此會造成即時性的封包無法於時間限制內抵達目的地,因此本論文設計一個全新的資料收集協定(Data Collection Protocol, DCP)與動態封包整合(Dynamic Packet Integration, DPI)演算法,我們設計DCP封包的欄位來區別資料類型(即時性或非即時性)與資料型態(影音或數字),DPI只針對非即時性的封包做整合,而即時性的封包則不經整合直接送出,本論文的創新之處在於整合封包的節點會根據緊急性資料的封包個數來動態改變封包整合的長度。最後為了驗證本論文的機制可以動態整合封包,我們實作DCP與DPI,從實驗結果中,我們證實本論文所提出的機制可以有效降低網路頻寬的使用,並且讓即時性的封包可於時間限制內抵達目的地。
Abstract
In Internet of Things (IoT), data collected by sensors can be classified as Real-Time (RT) and Non-Real-Time (NRT), where RT data must reach its destination within a time constraint, and NRT data can allow for a longer delay. Since most sensors transmit packets with only a few bytes of data, packet header adversely causes excess overhead on network. Packet integration techniques can be used to reduce the load on network. However, previous studies have integrated packets without distinguishing between RT and NRT packets, which results in RT packets may not reach their destination within their time limit. Therefore, this thesis designs a new Data Collection Protocol (DCP) and a Dynamic Packet Integration (DPI) algorithm. We design the packet format to distinguish data type (RT or NRT) and data content (video or text/numbers), DPI only integrates NRT packets, while RT packets are forwarded directly without any integration. Finally, to validate the dynamical packet integration scheme, we implement DCP and DPI on a ZedBoard and a gateway to Internet. From the experimental results, we confirm that proposed scheme can effectively reduce the bandwidth usage and allow RT packets to reach their destinations within the time limit.
目次 Table of Contents
論文審定書i
致謝ii
摘要iii
Abstractiv
目錄v
圖目錄vii
表目錄viii
第一章 導論1
1.1 研究動機1
1.2 研究方法1
1.3 章節介紹2
第二章 感測器網路與ZedBoard3
2.1 感測器3
2.2 ZedBoard4
2.2.1 ZedBoard的硬體配置5
2.2.2 Vivado與Vitis軟體平台6
2.3 閘道器10
2.4 相關研究12
第三章 動態封包整合機制15
3.1 資料收集協定15
3.2 閘道器要求收集資料18
3.3 感測器傳送資料19
3.4 動態整合封包22
3.5 伺服器解開資料25
第四章 實作與分析27
4.1 實作環境與設備規格27
4.2 感測器的實作29
4.3 NAT的實作30
4.4 DCP的實作31
4.4.1 閘道器要求收集資料31
4.4.2 感測器傳送資料33
4.4.3 閘道器動態整合封包38
4.4.4 伺服器解開資料41
4.5 實作結果43
4.5.1 參數的設定與效能量測43
4.5.2 結果分析45
4.5.2.1 傳送封包時所需頻寬45
4.5.2.2 處裡全部封包標頭所需的時間46
4.5.2.3 整合封包所需的時間47
4.5.2.4 封包來回所需的時間47
第五章 結論與未來工作49
5.1 結論49
5.2 遭遇問題49
5.3 未來工作50
Reference51
Acronyms55
Index57
參考文獻 References
[1] C. Fu, Q. Liu, P. Wu, M. Li, C. J. Xue, Y. Zhao, J. Hu, and S. Han, “Real-Time Data Retrieval in Cyber-Physical Systems with Temporal Validity and Data Availability Constraints,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 9, pp. 1779-1793, Sept. 2019.
[2] S. Ganguly, M. Chatterjee, and R. Izmailov, “Non-Real-Time Content Scheduling Algorithms for Wireless Data Networks,” IEEE Transactions on Computers, vol. 55, no. 7, pp. 893-905, Jul. 2006.
[3] L. M. S. Dias, J. F. C. B. Ramalho, T. Silvério, L. Fu, R. A. S. Ferreira, and P. S. André, “Smart Optical Sensors for Internet of Things: Integration of Temperature Monitoring and Customized Security Physical Unclonable Functions,” IEEE Access, vol. 10, pp. 24433-24443, Feb. 2022.
[4] A. Berger, A. Pötsch, and A. Springer, “Real-Time Data Collection in a Spatially Extended TDMA-Based Wireless Sensor Network,” 2012 IEEE Topical Conference on Wireless Sensors and Sensor Networks, Santa Clara, CA, USA, pp. 41-44, Jan. 2012.
[5] M. Hafeez and A. Saparon, “IP Core of Serial Peripheral Interface (SPI) with AMBA APB Interface,” 2019 IEEE 9th Symposium on Computer Applications & Industrial Electronics (ISCAIE), Malaysia, pp. 55-59, Apr. 2019.
[6] A. Anagha and M. Mathurakani, “Prototyping of Dual Master I2C Bus Controller,” 2016 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, pp. 2124-2129, Apr. 2016.
[7] Y. Yuan, Y. Tan, and H. Sun, “Design of The Software Framework of Reconfigurable Communication Interface Test System Based on Zedboard,” 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, pp. 754-757, Sept. 2015.
[8] B. Jeevan, P. Sahithi, P. Samskruthi, and K. Sivani, “Simulation and Synthesis of UART Through FPGA Zedboard for IoT Applications,” 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, pp. 1-7, Jan. 2022.
[9] V. Rajagopalan, V. Boppana, S. Dutta, B. Taylor, and R. Wittig, “Xilinx Zynq-7000 EPP: An Extensible Processing Platform Family,” 2011 IEEE Hot Chips 23 Symposium (HCS), Stanford, CA, USA, pp. 1-24, Aug. 2011.
[10] U. Farooq, I. Baig, and B. A. Alzahrani, “An Efficient Inter-FPGA Routing Exploration Environment for Multi-FPGA Systems,” IEEE Access, vol. 6, pp. 56301-56310, Oct. 2018.
[11] S. Jiang, “Rapid Implementation of the MAC and Interface Circuits for the Wireless LAN Cards Using FPGA,” Journal of Communications and Networks, vol. 1, no. 3, pp. 201-212, Sept. 1999.
[12] O. B. Tariq, J. Shan, G. Floros, C. P. Sotiriou, M. R. Casu, M. T. Lazarescu, and L. Lavagno, “High-Level Annotation of Routing Congestion for Xilinx Vivado HLS Designs,” IEEE Access, vol. 9, pp. 54286-54297, Mar. 2021.
[13] T. Townsend and B. Nelson, “Vivado Design Interface: An Export/Import Capability for Vivado FPGA Designs,” 2017 27th International Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium, pp. 1-7, Sept. 2017.
[14] D. O'Loughlin, A. Coffey, F. Callaly, D. Lyons, and F. Morgan, “Xilinx Vivado High Level Synthesis: Case studies,” 25th IET Irish Signals & Systems Conference 2014 and 2014 China-Ireland International Conference on Information and Communications Technologies (ISSC 2014/CIICT 2014), Limerick, pp. 352-356, Jun. 2014.
[15] N. Brown, “Weighing Up the New Kid on the Block: Impressions of Using Vitis for HPC Software Development,” 2020 30th International Conference on Field-Programmable Logic and Applications (FPL), Gothenburg, Sweden, pp. 335-340, Aug. 2020.
[16] A. Ushiroyama, M. Watanabe, N. Watanabe, and A. Nagoya, “Convolutional Neural Network Implementations Using Vitis AI,” 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, pp. 0365-0371, Jan. 2022.
[17] P. Mousouliotis, S. Zogas, P. Christakos, G. Keramidas, N. Petrellis, C. Antonopoulos, and N. Voros, “Exploiting Vitis Framework for Accelerating Sobel Algorithm,” 2021 10th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, pp. 1-5, Jun. 2021.
[18] H. A. Omar, W. Zhuang, and L. Li, “Gateway Placement and Packet Routing for Multihop In-Vehicle Internet Access,” IEEE Transactions on Emerging Topics in Computing, vol. 3, no. 3, pp. 335-351, Sept. 2015.
[19] R. Narayanan and C. S. R. Murthy, “A Routing Framework With Protocol Conversions Across Multiradio IoT Platforms,” IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4417-4432, Mar. 2021.
[20] W. E. Chen and B. E. Chen, “An Effective NAT Traversal Mechanism for IMS Applications in 3GPP Networks,” 2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kitakyushu, Japan, pp. 889-892, Aug. 2014.
[21] C. Li, R. Shinkuma, T. Sato, and E. Oki, “Real-Time Data Selection and Merging for 3D-Image Sensing Network With Multiple Sensors,” IEEE Sensors Journal, vol. 21, no. 19, pp. 22058-22076, Oct. 2021.
[22] B. Karthikeyan, R. Kumar, S. Rao, and Inabathini, “Energy Efficient Data Compression and Aggregation Technique Forwireless Sensor Networks,” 2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2), Chennai, India, pp. 209-212, Mar. 2017.
[23] R. Maivizhi and P. Yogesh, “Spatial Correlation Based Data Redundancy Elimination for Data Aggregation in Wireless Sensor Networks,” 2020 International Conference on Innovative Trends in Information Technology (ICITIIT), Kottayam, India, pp. 1-5, Feb. 2020.
[24] D. Tsitsipis, S. M. Dima, A. Kritikakou, C. Panagiotou, and S. Koubias, “Segmentation and Reassembly Data Merge (SaRDaM) Technique for Wireless Sensor Networks,” 2012 IEEE International Conference on Industrial Technology, Athens, Greece, pp. 1014-1019, Mar. 2012.
[25] M. Li, C. Xiong, and Y. Xiao, “A Target-Oriented Selection Strategy for Multiple-Packet Aggregation in Wireless Sensor Networks,” 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, pp. 326-331, Oct. 2020.
[26] K. Suzuki and S. Yamazaki, “Throughput Maximization Based on Optimized Frame-Aggregation Levels for IEEE 802.11 WLANs,” IEEE Communications Letters, vol. 25, no. 5, pp. 1725-1728, May 2021.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-05-24
校外 Off-campus:開放下載的時間 available 2028-05-24

您的 IP(校外) 位址是 18.118.140.108
現在時間是 2024-05-11
論文校外開放下載的時間是 2028-05-24

Your IP address is 18.118.140.108
The current date is 2024-05-11
This thesis will be available to you on 2028-05-24.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2028-05-24

QR Code