論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
基於機器學習對 3D 列印幾何圖形表面進行故障檢測 Surface fault detection for 3D printing geometry based on machine learning |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
59 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-05-25 |
繳交日期 Date of Submission |
2023-06-01 |
關鍵字 Keywords |
熔融沉積成型、品質檢測、遷移學習、集成學習、圖片分析 Fused Deposition Modeling, Quality Inspection, Transfer Learning, Ensemble Learning, Image Analysis |
||
統計 Statistics |
本論文已被瀏覽 223 次,被下載 13 次 The thesis/dissertation has been browsed 223 times, has been downloaded 13 times. |
中文摘要 |
熔融沉積成型 (Fused Deposition Modeling, FDM) 3D 列印是增材製造 (Additive Manufacturing, AM) 的一種,它基於以預定方式專門保存軟化材料並利 用以纖維的熱塑性聚合物逐層製造 3D 模型。 FDM 已經發展了很長時間,儘管 如此,它在列印過程中可能存在缺陷。 因此,本文提供了一種通過 3D 列印幾何 進行品質檢測的方法。利用融合預訓練模型作為特徵提取器的遷移學習和集成學 習,用在熔融沉積成型中進行監控和品質檢測。實驗結果表明,在大多數情況底下 VGG16 以及 VGG19 的算法組合都會給出最大的準確度,而 EfficientNetB0 以及 EfficientNetV2L 的算法組合都會給出較低的準確度。此外,遷移學習加上集成學習 的算法組合能夠有效的檢測逐層品質,從而減少時間以及耗材的浪費以至於提高 製造品質。 |
Abstract |
Fused Deposition Modeling (FDM) 3D printing is one of the Additive manufacturing (AM) which fabricates 3D models layer by layer based on specifically saving softened material in a foreordained way and utilizing thermoplastic polymers that come as fibers. FDM has been in development for a long time, nevertheless, it can have defects in the printing process. Consequently, this paper offers an approach to fault detection by 3D printing geometry for utilizing a gathering of transfer learning using pre-trained model as a feature extractors and ensemble learning. The experimental results show that the algorithm combination of VGG16 and VGG19 will give the maximum accuracy in most cases, while the algorithm combination of EfficientNetB0 and EfficientNetV2L will give lower accuracy. In addition, the algorithm combination of transfer learning and ensemble learning can effectively detect the layer-by-layer quality, thereby reducing the waste of time and consumables and improving the manufacturing quality |
目次 Table of Contents |
論文審定書 i 摘要 ii Abstract iii 目 錄 iv 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機與目的 1 第二章 文獻探討 2 第一節 文獻回顧 2 第二節 VGG & Inception 2 第三節 Resnet 4 第四節 EfficientNet 5 第五節 相關文獻 6 第三章 研究架構與方法 8 第一節 研究架構 8 第二節 分類原則 9 第三節 卷積神經網路 12 一、 VGG16 12 二、 VGG19 13 三、 InceptionV3 13 四、 Resnet50 14 五、 EfficientNetB0 15 六、 EfficientNetV2L 15 第四節 集成學習 16 一、 Bagging 16 1. Random Forest 16 二、 Boosting 16 1. AdaBoost 16 2. GBDT 17 3. XGBoost 17 4. LightGBM 18 5. CatBoost 18 第四章 研究成果 19 第一節 六種幾何圖形辨識比較 19 第二節 顏色差異對於辨別準確度比較 23 第五章 研究討論與結論 31 第一節 研究討論 31 第二節 研究結論 32 參考文獻 34 附錄一、灰色幾何圖形準確度 43 附錄二、綠色幾何圖形準確度 45 附錄三、藍色幾何圖形準確度 47 附錄四、基線準確度 49 附錄五、英文縮寫及中文對照表 49 |
參考文獻 References |
1. Singamneni, S., Yifan, L. V., Hewitt, A., Chalk, R., Thomas, W., & Jordison, D. (2019). Additive manufacturing for the aircraft industry: a review. J. Aeronaut. Aerosp. Eng, 8(1), 351-371. 2. Lee, J. Y., An, J., & Chua, C. K. (2017). Fundamentals and applications of 3D printing for novel materials. Applied materials today, 7, 120-133. 3. Liu, J., Sheng, L., He, Z. Z., Liu, J., Sheng, L., & He, Z. Z. (2019). Liquid metal wheeled 3D-printed vehicle. Liquid Metal Soft Machines: Principles and Applications, 359-372. 4. Ricles, L. M., Coburn, J. C., Di Prima, M., & Oh, S. S. (2018). Regulating 3D-printed medical products. Science translational medicine, 10(461), eaan6521. 5. Calignano, F., Manfredi, D., Ambrosio, E. P., Biamino, S., Lombardi, M., Atzeni, E., ... & Fino, P. (2017). Overview on additive manufacturing technologies. Proceedings of the IEEE, 105(4), 593-612. 6. Boschetto, A., & Bottini, L. (2016). Design for manufacturing of surfaces to improve accuracy in Fused Deposition Modeling. Robotics and Computer-Integrated Manufacturing, 37, 103-114. 7. Valerga, A. P., Batista, M., Salguero, J., & Girot, F. (2018). Influence of PLA filament conditions on characteristics of FDM parts. Materials, 11(8), 1322. 8. Ottman, N., Ruokolainen, L., Suomalainen, A., Sinkko, H., Karisola, P., Lehtimńki, J., ... & Fyhrquist, N. (2019). Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. Journal of allergy and clinical immunology, 143(3), 1198-1206. 9. Conway, K. M., & Pataky, G. J. (2019). Crazing in additively manufactured acrylonitrile butadiene styrene. Engineering Fracture Mechanics, 211, 114-124. 10. Heidari-Rarani, M., Rafiee-Afarani, M., & Zahedi, A. M. (2019). Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Composites Part B: Engineering, 175, 107147. 11. Ahmed, S. W., Hussain, G., Al-Ghamdi, K. A., & Altaf, K. (2021). Mechanical properties of an additive manufactured CF-PLA/ABS hybrid composite sheet. Journal of Thermoplastic Composite Materials, 34(11), 1577-1596. 12. Bacha, A., Sabry, A. H., & Benhra, J. (2019). Fault Diagnosis in the Field of Additive Manufacturing (3D Printing) Using Bayesian Networks. International Journal of Online & Biomedical Engineering, 15(3). 13. Kadam, V., Kumar, S., Bongale, A., Wazarkar, S., Kamat, P., & Patil, S. (2021). Enhancing surface fault detection using machine learning for 3D printed products. Applied System Innovation, 4(2), 34. 14. Zhang, Y., Hong, G. S., Ye, D., Zhu, K., & Fuh, J. Y. (2018). Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring. Materials & Design, 156, 458-469. 15. Priya, K., & Maheswari, P. U. (2021, November). Deep Learnt Features and Machine Learning Classifier for Texture classification. In Journal of Physics: Conference Series (Vol. 2070, No. 1, p. 012108). IOP Publishing. 16. Delli, U., & Chang, S. (2018). Automated process monitoring in 3D printing using supervised machine learning. Procedia Manufacturing, 26, 865-870. 17. Khadilkar, A., Wang, J., & Rai, R. (2019). Deep learning–based stress prediction for bottom-up SLA 3D printing process. The International Journal of Advanced Manufacturing Technology, 102(5), 2555-2569. 18. Baumgartl, H., Tomas, J., Buettner, R., & Merkel, M. (2020). A deep learning-based model for defect detection in laser-powder bed fusion using in-situ thermographic monitoring. Progress in Additive Manufacturing, 5(3), 277-285. 19. Pham, G. N., Lee, S. H., Kwon, O. H., & Kwon, K. R. (2018). Anti-3D weapon model detection for safe 3D printing based on convolutional neural networks and D2 shape distribution. Symmetry, 10(4), 90. 20. Katiyar, A., Behal, S., & Singh, J. (2021, March). Automated defect detection in physical components using machine learning. In 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 527-532). IEEE. 21. Garfo, S., Muktadir, M. A., & Yi, S. (2020). Defect detection on 3d print products and in concrete structures using image processing and convolution neural network. Journal of Mechatronics and Robotics, 4(1), 74-84. 22. Chen, W., Zou, B., Huang, C., Yang, J., Li, L., Liu, J., & Wang, X. (2022). The defect detection of 3D-printed ceramic curved surface parts with low contrast based on deep learning. Ceramics International. 23. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. 24. Paraskevoudis, K., Karayannis, P., & Koumoulos, E. P. (2020). Real-time 3D printing remote defect detection (stringing) with computer vision and artificial intelligence. Processes, 8(11), 1464. 25. Putra, M. A. P., Chijioke, A. L. A., Verana, M., Kim, D. S., & Lee, J. M. (2022). Efficient 3D Printer Fault Classification Using a Multi-Block 2D-Convolutional Neural Network. 한국통신학회논문지, 47(2), 236-245. 26. Zhou, J., Yang, X., Zhang, L., Shao, S., & Bian, G. (2020). Multisignal VGG19 network with transposed convolution for rotating machinery fault diagnosis based on deep transfer learning. Shock and Vibration, 2020. 27. Kim, H., Lee, H., Kim, J. S., & Ahn, S. H. (2020). Image-based failure detection for material extrusion process using a convolutional neural network. The International Journal of Advanced Manufacturing Technology, 111(5), 1291-1302. 28. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9). 29. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818-2826). 30. Banadaki, Y., Razaviarab, N., Fekrmandi, H., Li, G., Mensah, P., Bai, S., & Sharifi, S. (2022). Automated Quality and Process Control for Additive Manufacturing using Deep Convolutional Neural Networks. Recent Progress in Materials, 4(1), 1-1. 31. Jin, Z., Zhang, Z., & Gu, G. X. (2020). Automated real‐time detection and prediction of interlayer imperfections in additive manufacturing processes using artificial intelligence. Advanced Intelligent Systems, 2(1), 1900130. 32. Razaviarab, N., Sharifi, S., & Banadaki, Y. M. (2019, March). Smart additive manufacturing empowered by a closed-loop machine learning algorithm. In Nano-, Bio-, Info-Tech Sensors and 3D Systems III (Vol. 10969, pp. 50-57). SPIE. 33. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). 34. He, K., Zhang, X., Ren, S., & Sun, J. (2016, October). Identity mappings in deep residual networks. In European conference on computer vision (pp. 630-645). Springer, Cham. 35. Ruhi, Z. M., Jahan, S., & Uddin, J. (2021). A Novel Hybrid Signal Decomposition Technique for Transfer Learning Based Industrial Fault Diagnosis. Annals of Emerging Technologies in Computing (AETiC), 5(4), 37-53. 36. He, D., Liu, C., Chen, Y., Jin, Z., Li, X., & Shan, S. (2021). A rolling bearing fault diagnosis method using novel lightweight neural network. Measurement Science and Technology, 32(12), 125102. 37. Zhang, W., Li, X., & Ding, Q. (2019). Deep residual learning-based fault diagnosis method for rotating machinery. ISA transactions, 95, 295-305. 38. Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (pp. 6105-6114). PMLR. 39. Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861. 40. Tan, M., & Le, Q. (2021, July). Efficientnetv2: Smaller models and faster training. In International Conference on Machine Learning (pp. 10096-10106). PMLR. 41. Zhou, G., Luo, L., Xu, H., Zhang, X., Guo, H., & Zhao, H. (2022, May). Brick Yourself within 3 Minutes. In 2022 International Conference on Robotics and Automation (ICRA) (pp. 6261-6267). IEEE. 42. Li, B., Wang, Z., Wu, N., Shi, S., & Ma, Q. (2022). Dog nose print matching with dual global descriptor based on Contrastive Learning. arXiv preprint arXiv:2206.00580. 43. Wang, K., Yu, L., Xu, J., Zhang, S., & Qin, J. (2022). Energy consumption intelligent modeling and prediction for additive manufacturing via multisource fusion and inter-layer consistency. Computers & Industrial Engineering, 108720. 44. Available online: https://www.prusa3d.com/product/original-prusa-i3-mk3s-kit-3/ (accessed on 25 May 2023). 45. Available online : https://tw-3dp.com/ (accessed on 25 May 2023). 46. Available online:https://www.sony.com.tw/en/electronics/interchangeable-lens-cameras/ilce-7m3-body-kit (accessed on 25 May 2023). 47. Available online: https://colab.research.google.com/(accessed on 25 May 2023). 48. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. 49. Zhao, X., Wu, Y., Lee, D. L., & Cui, W. (2018). iforest: Interpreting random forests via visual analytics. IEEE transactions on visualization and computer graphics, 25(1), 407-416. 50. Bühlmann, P. (2012). Bagging, boosting and ensemble methods. In Handbook of computational statistics (pp. 985-1022). Springer, Berlin, Heidelberg. 51. Ghojogh, B., & Crowley, M. (2019). The theory behind overfitting, cross validation, regularization, bagging, and boosting: tutorial. arXiv preprint arXiv:1905.12787. 52. Ganaie, M. A., & Hu, M. (2021). Ensemble deep learning: A review. arXiv preprint arXiv:2104.02395. 53. Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119-139. 54. Wang, F., Li, Z., He, F., Wang, R., Yu, W., & Nie, F. (2019). Feature learning viewpoint of AdaBoost and a new algorithm. IEEE Access, 7, 149890-149899. 55. Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232. 56. Anghel, A., Papandreou, N., Parnell, T., De Palma, A., & Pozidis, H. (2018). Benchmarking and optimization of gradient boosting decision tree algorithms. arXiv preprint arXiv:1809.04559. 57. Shi, Y., Li, J., & Li, Z. (2018). Gradient boosting with piece-wise linear regression trees. arXiv preprint arXiv:1802.05640. 58. Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54(3), 1937-1967. 59. Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794). 60. Sagi, O., & Rokach, L. (2018). Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1249. 61. Zounemat-Kermani, M., Batelaan, O., Fadaee, M., & Hinkelmann, R. (2021). Ensemble machine learning paradigms in hydrology: A review. Journal of Hydrology, 598, 126266. 62. Hancock, J., & Khoshgoftaar, T. M. (2021, August). Leveraging lightgbm for categorical big data. In 2021 IEEE Seventh International Conference on Big Data Computing Service and Applications (BigDataService) (pp. 149-154). IEEE. 63. Tanha, J., Abdi, Y., Samadi, N., Razzaghi, N., & Asadpour, M. (2020). Boosting methods for multi-class imbalanced data classification: an experimental review. Journal of Big Data, 7(1), 1-47. 64. Zhang, Y., Liu, J., & Shen, W. (2022). A Review of Ensemble Learning Algorithms Used in Remote Sensing Applications. Applied Sciences, 12(17), 8654. 65. Dorogush, A. V., Ershov, V., & Gulin, A. (2018). CatBoost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363. 66. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: unbiased boosting with categorical features. Advances in neural information processing systems, 31. 67. Hancock, J. T., & Khoshgoftaar, T. M. (2020). CatBoost for big data: an interdisciplinary review. Journal of big data, 7(1), 1-45. 68. González, S., García, S., Del Ser, J., Rokach, L., & Herrera, F. (2020). A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities. Information Fusion, 64, 205-237. 69. Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE access, 7, 53040-53065. 70. Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., ... & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of big Data, 8(1), 1-74. 71. Wang, X., Chen, C., Yuan, J., & Chen, G. (2020). Color reproduction accuracy promotion of 3D-printed surfaces based on microscopic image analysis. International Journal of Pattern Recognition and Artificial Intelligence, 34(01), 2054004. 72. Li, Z., Zhang, Z., Shi, J., & Wu, D. (2019). Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. Robotics and Computer-Integrated Manufacturing, 57, 488-495. 73. Amihai, I., Gitzel, R., Kotriwala, A. M., Pareschi, D., Subbiah, S., & Sosale, G. (2018, July). An industrial case study using vibration data and machine learning to predict asset health. In 2018 IEEE 20th Conference on Business Informatics (CBI) (Vol. 1, pp. 178-185). IEEE 74. Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., & Loncarski, J. (2018, July). Machine learning approach for predictive maintenance in industry 4.0. In 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA) (pp. 1-6). IEEE. 75. Jayasudha, M., Elangovan, M., Mahdal, M., & Priyadarshini, J. (2022). Accurate Estimation of Tensile Strength of 3D Printed Parts Using Machine Learning Algorithms. Processes, 10(6), 1158. 76. Gardner, J. M., Hunt, K. A., Ebel, A. B., Rose, E. S., Zylich, S. C., Jensen, B. D., ... & Sauti, G. (2019). Machines as craftsmen: localized parameter setting optimization for fused filament fabrication 3D printing. Advanced Materials Technologies, 4(3), 1800653. 77. Dabbagh, S. R., Ozcan, O., & Tasoglu, S. (2022). Machine learning-enabled optimization of extrusion-based 3D printing. Methods, 206, 27-40. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |