論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2028-06-19
校外 Off-campus:開放下載的時間 available 2028-06-19
論文名稱 Title |
南海石首魚科叫姑魚屬的分類學和系統地理學之研究 The study of taxonomy and phylogeography of the genus Johnius (Perciformes: Sciaenidae ) in the South China Sea |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
291 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-06-13 |
繳交日期 Date of Submission |
2023-06-19 |
關鍵字 Keywords |
特徵演化歷史重建、動物地理學分佈、空間分佈、形態學、分隔事件 zoogeographical distribution, spatial distribution, Morphological analyses, ancestral reconstruction, vicariant event |
||
統計 Statistics |
本論文已被瀏覽 343 次,被下載 0 次 The thesis/dissertation has been browsed 343 times, has been downloaded 0 times. |
中文摘要 |
本研究探討了南海 (SCS) 地區石首魚科叫姑魚屬(Johnius)的分類學、動物地理學和演化史。首先,利用形態學和COI分子的方法對臺灣水域進行分類重新整理,成功辨識分出七種的叫姑魚屬的種類。其中,大多數的魚種分布在臺灣的西部海域,介於高雄的興達港 (22.4° N) 和新竹 (24.8° N) 之間,其中臺灣叫姑魚 J. taiwanensis、鱗鰭叫姑魚 J. distinctus 和皮氏叫姑魚 J. belangerii 全年都有捕獲紀錄。鈍頭叫姑魚 J. amblycephalus 和婆羅洲叫姑魚 J. borneensis 僅在夏季被捕獲,而屈氏叫姑魚 J. trewavasae則較罕見。此外,在南海海域成功鑑定出 17 種有效的叫姑魚屬魚種,其中包括一個新發現物種-佐氏叫姑魚 Johnius sasakii sp. nov. ,並對其進行了全面的描述。從南海叫姑魚屬的動物地理學得知,叫姑魚屬可分為三群,分別是廣佈群3種(鈍頭叫姑魚 J. amblycephalus,皮氏叫姑魚 J. belangerii 和 婆羅洲叫姑魚 J. borneensis)、北方群4種(鱗鰭叫姑魚 J. distinctus,叫姑魚 J. grypotus,臺灣叫姑魚 J. taiwanensis 和屈氏叫姑魚 J. trewavasae)和南方群10種(卡氏叫姑魚 J. carouna、突吻叫姑魚 J. coitor、異鱗叫姑魚 J. heterolepis、寬眼叫姑魚 J. latifrons、大鼻孔叫姑魚 J. macorhynus、菲律賓叫姑魚 J. philippinus、斜口叫姑魚 J. plagiostoma、佐氏叫姑魚 J. sasakii、尖尾叫姑魚 J. trachycephalus 和韋氏叫姑魚 J. weberi) 所組成。南海南部擁有最大的物種豐富度和特有種,達13種,而南海北部較低,僅有8種(包括卡氏叫姑魚)。南海北部和南部範圍交疊了兩個動物區:前者從臺灣到中國南部的海南島,後者從南越到馬來西亞半島南部。根據三個粒線體標記基因(16S、COI、Cyt b) 和兩個核標記基因(S7、視紫質)分子序列數據,構建了叫姑魚屬的親緣關係樹。利用時間校準推斷叫姑魚屬起源於中新世晚期。由祖先系統發育的研究顯示,叫姑魚屬的祖先可能起源於南海,然後擴展為兩條途徑:一個分支在南海北部發生分化,形成亞熱帶地區群,另一個分支則向南海南部擴散,在熱帶地區群呈現高度的物種多樣性的熱帶地區群。推測叫姑魚屬在上新世-更新世時期可能由於週期性冰川的作用和海平面波動而迅速種化。 關鍵詞:形態學、空間分佈、動物地理學分佈、特徵演化歷史重建、分隔事件。 |
Abstract |
This study examined the taxonomy, zoogeography, and evolutionary history of the genus Johnius in the South China Sea (SCS) region. Firstly, a taxonomic review in Taiwanese waters successfully identified and separated seven legitimate Johnius species based on morphology and the COI molecular approach. The majority were found in the western coast of Taiwan between Xingda (22.4° N) and Hsinchu (24.8° N), with J. taiwanensis, J. distinctus, and J. belangerii being caught throughout the year. Johnius amblycephalus and J. borneensis only caught in summer, and J. trewavasae was rarely encountered. A total of 17 valid Johnius species successfully identified in the SCS waters, including a newly discovered species, Johnius sasakii sp. nov., are fully described. Thus, a zoogeographical inference of Johnius in the SCS concludes that this genus is comprised of widely distributed (3 species, J. amblycephalus, J. belangerii, and J. borneensis), northern (4 species, J. distinctus, J. grypotus, J. taiwanensis, and J. trewavasae), and southern (10 species, J. carouna, J. coitor, J. heterolepis, J. latifrons, J. macorhynus, J. philippinus, J. plagiostoma, J. sasakii, J. trachycephalus, and J. weberi) species that mostly occur in this region. The southern SCS has the largest species richness and endemism number, with 13 species distributed, compared with the northern SCS which has the lowest, with 8 species dispersed. The northern and southern SCS range bounds overlap two faunas: the former from Taiwan to Hainan, southern China, and the latter from southern Vietnam to south Peninsular Malaysia. Lastly, a phylogenetic tree was constructed based on concatenated sequence data from a partial set of three mitochondrial (16S, COI, Cyt b) and two nuclear (S7, Rhodopsin) marker genes to infer Johnius relationships. An origin in the late Miocene was inferred for Johnius by using time calibrations. The ancestral phylogeny suggests that ancestral Johnius likely originated in the SCS, then expanded into two pathways: divergence at the northern SCS as a subtropical region, and at the southern SCS with high diversification in the tropics. It was suggested this genus speciated rapidly during the Pliocene-Pleistocene epoch, likely due to cyclical glaciations and sea level fluctuations. |
目次 Table of Contents |
Thesis validation letter…………………………………………………………………….... Acknowledgments……………………………………………………………………..….....ii Abstract Chinese…………………………………………………………………….……...iii Abstract English……………………………………………………………………….…….v Table of contents……………………………………………………………………….…..vii Table of figures…………………………………………………………………………….xii Table of tables………………………………………………………………………..…..xviii Chapter 1: General introduction…………………………………………………………….1 1.1Diversification of marine fishes in the South China Sea……….……….………….1 1.2Dispersal and diversity of Johnius………………………………………………….3 1.3Systematics of genus Johnius……………………...……………………………….5 1.4Biogeography and evolutionary dispersal in Johnius…………………….........…...6 1.5Objectives…………………………………………………………………………..7 Chapter 2: Taxonomic review of the genus Johnius (Perciformes: Sciaenidae) in Taiwanese waters, with their geographical distribution.……………………….……………….9 2.1 Introduction………………………………………………………………...……….9 2.2 Material and methods……………………………………………………………...10 2.2.1 Sampling and examination of specimens……… ……..…………………….10 2.2.2 Integrated approach to verifying Johnius species…………………………..11 2.3 Result…………………………………………………………………………..….13 2.3.1 Genus Wak Lin, 1938, accepted as a junior synonym of Johnius Bloch, 1793………………………………………………………………………...13 2.3.2 Synonyms and invalid names of nominal species of Johnius, 1793………….14 2.3.3 Integrated identification of Taiwan Johnius species…………………..…….15 2.3.4. Spatial distribution and seasonal abundance of Taiwan Johnius…………….16 2.4 Systematics……………………………………………………………...…………16 2.4.1. Johnius amblycephalus (Bleeker, 1855)…………………………...………18 2.4.2. Johnius belangerii (Cuvier, 1830)…………………………...……...……..18 2.4.3. Johnius borneensis (Bleeker, 1851)..………………………...…………….19 2.4.4. Johnius distinctus (Tanaka, 1916)...………………………...……………...20 2.4.5. Johnius grypotus (Richardson, 1846)...………………………...…….…...20 2.4.6. Johnius taiwanensis Chao et al., 2019……..………….…….…...………..21 2.4.7. Johnius trewavasae Sasaki, 1992..………...…………………...…….…...22 2.4.8. Key to the species of Johnius occurring in Taiwan waters…………….….23 2.5 Discussion…………………………………………………………….…………...24 2.6 Conclusions………………………………………………………………….…….26 2.7 Summary of chapter 2…………………………………………..…………….…...27 Chapter 3: Taxonomic revision of the genus Johnius (Perciformes: Sciaenidae) from South China Sea and a new species description of with note on zoogeographical distribution……………………………………………………………………41 3.1 Introduction……………………………………………………………………….41 3.2 Material and methods……………………………………………………………..43 3.2.1 Sampling survey and collection……… ……………………..……………..43 3.2.2 Meristic and morphometric characters examined…………………………..44 3.2.3 Molecular data………………………………………………………………45 3.3 Result……………………………………………………………………………...46 3.3.1 Genus Bola Hamilton, 1822 and Wak Lin, 1938 as a junior synonym of Johnius Bloch, 1793......……………...………………………….………….………46 3.3.2 Synonyms and invalid names of nominal species of Johnius Bloch, 1793…………………………………………..……………………………46 3.3.3. Integrated identification of South China Sea Johnius species…………….47 3.4 Systematics………………….…………………………………………………….48 3.4.1 Key to the species of Johnius in the South China Sea waters………………49 3.4.2 Johnius coitor (Hamilton, 1822) ....………………………...……………….51 3.4.3 Johnius plagiostoma (Bleeker, 1849) ……………………………………….53 3.4.4 Johnius weberi Hardenberg, 1936..………...………………...……………...55 3.4.5 Johnius trachycephalus (Bleeker, 1851)..………………….…......…………57 3.4.6 Johnius latifrons Sasaki, 1992……..…..……………………..……………..59 3.4.4 Johnius philippinus Sasaki, 1999……….………………….…...…………...60 3.4.5 Johnius sasakii sp. nov. Hanafi, Chen, Seah, Chang, Liu & Chao, 2022……62 3.5 Discussion……………………………………………………………..…..………66 3.5.1 Biodiversity of Johnius in the SCS…………………………………………..66 3.5.2 Johnius in Taiwan with the SCS boundary CYR…………………………….68 3.5.3 Geographic groups and the SCS circulation currents………………………...70 3.5.4 Reproduction of Johnius and the seasonal variation…………………………71 3.6 Conclusions……………………………………………………………………......72 3.7 Supplementary material examined…………..…………………………………….73 3.7.1 Johnius amblycephalus (Bleeker, 1855) …………………………………….73 3.7.2 Johnius belangerii (Cuvier, 1830) ………………………………………......74 3.7.3 Johnius borneensis (Bleeker, 1851) …………………………………………75 3.7.4 Johnius carouna (Cuvier, 1930) …………………………………………….76 3.7.5 Johnius heterolepis Bleeker, 1873………………………………………......78 3.7.6 Johnius macrorhynus (Mohan, 1976) ………………………………………79 3.7.7 Johnius sasakii Hanafi, Chen, Seah, Chang, Liu & Chao, 2022……….…....80 3.7.8 Johnius trewavasae Sasaki, 1992……………………………………………80 3.7.9 Johnius macropterus (Bleeker, 1853) ………………………………………80 3.8 Summary of chapter 3………………………………………………………..……81 Chapter 4: Phylogeny systematics and evolutionary history of the genus Johnius in the South China Sea inferred by multilocus sequence data…………………….……….114 4.1 Introduction………………………………………………………….…………...114 4.2 Materials and methods……………………………………………………….…...116 4.2.1 Sampling procedure...……………………………………………….…......116 4.2.2 DNA extraction, PCR and sequencing analysis….………………………..117 4.2.3 Sequence, alignments, data exploration, model and outgroup selection…...117 4.2.4 Sequence analysis and reconstruction of phylogeny…………………..…..118 4.2.5 Divergence time estimation……………………………………………..…119 4.2.6 Reconstruction of ancestral distribution …………………………….…..…119 4.3 Results………………………………………………………………...………….120 4.3.1 Sequence analyses…………………..………………….......…………...…120 4.3.2 Phylogenetic reconstructions………………..……………………………..120 4.3.3 Divergence time estimation……. ………...…………………...…………..121 4.3.4 The potential origin of genus Johnius………...……………………………122 4.4 Discussion…………………………………………………………..……………123 4.4.1 Phylogeny of the genus Johnius in the SCS………………………………..123 4.4.2 Phylogeography of the genus Johnius in the SCS ………………………....124 4.4.3 Potential origin and evolutionary history of Johnius ……………………....125 4.5 Conclusions……………………………………………………………..………..128 4.6 Summary of chapter 4……………………………………...……………..……....128 Chapter 5: Future studies……………………………………………………….…………154 5.1 Future studies of Johnius in the Indo-West Pacific region………………….…...154 References……………………………………………………………………….………..156 Autobiography/Curriculum Vitae (CV)…………………………………………….…….172 Appendices……………………………...………………………………………………..180 1.Hanafi, N., Lai, C.C., Chen, K.C., and Chen, M.C. (2023). A newly recorded species Dendrophysa russelii (Cuvier 1829) from Chiku lagoon, Taijiang National Park. Journal of National Park (under review submission)……………………………..181 2.Hanafi, N., Yang, M.C., Chen, M.C., Lai, C.C., and Chang, C.C. (2023). A datasets of genus Johnius (Perciformes; Sciaenidae) occurrences around the Taiwan wastern coast. Biodiversity Data Journal (Under review submission)…………………….197 3.Hanafi, N., Chen, M.-H., Seah, Y.G., Chang, C.-W., Liu, S.Y.V., Lai, C.-C. & Chao, N.L. (2023) Taxonomic Revision of the Genus Croaker Johnius (Perciformes: Sciaenidae) in Taiwanese Waters. Journal of Marine Science and Engineering 11(3): 471. https://doi.org/ 10.3390/jmse11030471..........................................................216 4.Hanafi, N., Chen, M.-H., Seah, Y.G., Chang, C.-W., Liu, S.Y.V. & Chao, N.L. (2022). Johnius sasakii, a new species of croaker (Perciformes: Sciaenidae) with a key to Johnius from East Malaysia, Borneo. Zootaxa, 5116(3), 393-409. https://doi.org/10.11646/zootaxa.5116.3.5..............................................................246 5.Seah, Y.G., Hanafi, N., Mazlan, A.G., & Chao, N.L. (2015). A new species of Larimichthys from Terengganu, east coast of Peninsular Malaysia (Perciformes: Sciaenidae). Zootaxa, 3956, 271-280……………………………………………..263 |
參考文獻 References |
Adams, C.G., Gentry, A.W., & Whybrow, P.J., 1983. Dating the terminal Tethyan event. Utr. Micropaleontol. Bull. 30, 273–298. Aguirre, W.E., & Shervette, V.R. (2005). Morphological diversity of the Cynoscion group (Perciformes: Sciaenidae) in the Gulf of Guayaquil region, Ecuador: a comparative approach. Environmental Biol. Fishes, 73 (4), 403-413. https://doi.org/10.1007/s10641-005-2227-3 Akin, S., Buhan, E., Winemiller, K.O., & Yilmaz, H. (2005). Fish assemblage structure of Koycegiz Lagoon–Estuary, Turkey: Spatial and temporal distribution patterns in relation to environmental variation. Estuarine, Coastal Shelf Sci., 64(4), 671-684. Allen, G.R. (2008). Conservation hotspots of biodiversity and endemism for Indo-Pacific coral reef fishes. Aquat. Conser. Mar. Freshw. Ecosyst. 18:541–556 Almany, G.R. (2004). Does increased habitat complexity reduce predation and competition in coral reef fish assemblages? Oikos, 106(2), 275-284. Ambak, M.A., Isa, M.M., Zakaria, M.Z., & Mazlan, M.A. 2010. Fishes of Malaysia (Second Edition). Penerbit UMT. Pp. 301. Atan, Y., Jaafar, H., & Majid, A. R. A. (2010). Ikan laut Malaysia: glosari nama sahih species ikan. Dewan Bahasa dan Pustaka. Avise, J.C. (2000). Phylogeography: the history and formation of species. Cambridge, MA: Harvard University Press. Barber, P.H., & Bellwood, D.R. (2005). Biodiversity hotspots: Evolutionary origins of biodiversity in wrasses (Halichoeres: Lab-ridae) in the Indo-Pacific and new world tropics. Mol. Phylogenet. Evol. 35, 235–253. Barbosa, A.J.B., Sampaio, I., Schneider, H., & Santos, S. (2014). Molecular phylogeny of weakfish species of the Stellifer group (Sciaenidae, Perciformes) of the Western South Atlantic based on mitochondrial and nuclear data. Plos One, 9(7), e102250. Bellwood, D.R., & Wainwright, P.C. (2002). The history and biogeography of fishes on coral reefs. In: Sale PF (ed) Coral Reef Fishes: Dynamics and Diversity on a Complex Ecosystem. Academic Press, New York Bellwood, D.R., Klanten, S., Cowman, P.F., Pratchett, M.S., Konow, N., & van Herwerden, L. (2010). Evolutionary history of the butterflyfishes (f: Chaetodontidae) and the rise of coral feeding fishes. J. Evol. Biol. 23:335–349 Blake, R. W. (2004). Fish functional design and swimming performance. J. Fish Biol., 65(5), 1193-1222. Briggs, J.C. (2005). The marine East Indies: diversity and speciation. J. Biogeogr., 32(9), 1517-1522. Carpenter, K.E., Barber, P.H., Crandall, E.D., Ablan-Lagman, M.C.A., Ambariyanto Mahardika, G.N., Manjaji-Matsumoto, B.M., Juinio-Meñez, M.A., Santos, M.D., & Starger, C.J., et al. (2010). Comparative Phylogeography of the Coral Triangle and Implications for Marine Management. J. Mar. Biol. 2011, 1–14. Cerqueira, V.R., & Haimovici, M. (1990). Dinâmica populacional do gordinho Peprilus paru (Pisces, Stromateidae), no litoral sul do Brasil. Revista Brasileira de Biologia, 50(3), 599-613. Chao, L., Seah, Y.G., Shah, N.H.A., Wong, L., Kar-Hoe, K.-H., Hadiaty, R.K., Suharti, S., Russell, B. & Larson, H. (2020). Johnius plagiostoma. The IUCN Red List of Threatened Species 2020: e.T49182018A49239160. Chao, N.L., (1978). A basis for classifying Western Atlantic Sciaenidae (Teleostei: Perciformes). NNOA Tech. Rep. Circ. 415, 1–65. Chao, N.L., (1986). A synopsis on zoogeography of Sciaenidae. In: Indo-Pacific Fish Biology Proceedings of the Second Indo-Pacific Fish Conference, July 28–Agust 3, 1985, Tokyo, Japan, pp. 570–589. Chao, L. N., & Musick, J. A. (1977). Life-history, feeding-habits, and functional-morphology of juvenile Sciaenid fishes in York River Estuary, Virginia. Fishery Bulletin, 75(4), 657. Chao, N.L., Chang, C.W., Chen, M.H., Guo, C.C, Lin, B.A., Liou, Y.Y., Shen, K.N., & Liu, M. (2019). Johnius taiwanensis, a new species of Sciaenidae from the Taiwan Strait, with a key to Johnius species from Chinese waters. Zootaxa, 4651(2), 259–270. https://doi.org/10.11646/zootaxa.4651.2.3. Chappell, J. (1981). Relative and average sea level changes, and endo-, epi-, and exogenic processes on the Earth. In: Allison I (ed) Sea level, ice, and climatic change. International Association of Hydrological Sciences, vol 131. International Association of Hydrological Science, United Kingdom Chen H.S., Chen, K.S., Chen, C.Y., Hung, C.C., Meng, P.J., & Chen, M.H. (2021). Spatiotemporal distribution of shrimp assemblages in the western coastal waters off Taiwan at the Tropic of Cancer, Western Pacific Ocean. Estuarine Coastal Shelf Sci., 255, 107356. https://doi.org/10.1016/j.ecss.2021.107356 Chen, C.H. (2006). Studies on the species composition and abundance fluctuation of set-net fisheries in the coastal waters of Northern Taiwan. MSc Dissertation, Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung, 99 pp. [in Chinese] Chen, M.H., Chen, K.S., Chen, H.S., & Chen, C.Y. (2019). The marine fishes of Taijiang National Park. Taijiang National Park, Tainan. (in Chinese). Chen, W.-J., & Borsa, P. (2020). Diversity, phylogeny, and historical biogeography of large-eye seabreams (Teleostei: Lethrinidae). Mol. Phylogenet. Evol. 151, 106902. Chen, W.-J., Ruiz-Carus, R., & Ortí, G., (2007). Relationships among four genera of mojarras (Teleostei: Perciformes: Gerreidae) from the western Atlantic and their tentative placement among percomorph fishes. J. Fish Biol. 70, 202–218. Cheng, J., Wang, Z., Song, N., Yanagimoto, T., & Gao, T. (2019). Phylogeographic analysis of the genus Platycephalus along the coastline of the northwestern Pacific inferred by mitochondrial DNA. BMC Evolutionary Biology, 19, 1-16. Chin, P.K. (1998). Marine food fishes and fisheries of Sabah/Chin Phui Kong; foreword by Dr. Mahathir bin Mohamad; photographs by Tomoyoshi Kajiwara. Kota Kinabalu, Sabah: Natural History Publications (Borneo) in association with Science and Technology Unit, 1998. Choat, J. H., Klanten, O. S., Van Herwerden, L., Robertson, D. R., & Clements, K. D. (2012). Patterns and processes in the evolutionary history of parrotfishes (Family Labridae). Biol. J. Linn. Soc., 107(3), 529-557. Chow, S., & Hazama, K. (1998). Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol. Ecol., 7(9), 1255-1256. Chu, K.Y. (1956). A review of sciaenoid fishes of Taiwan. Report of the Institute of Fish Biology of Ministry of Economic Affairs and National Taiwan University, No.1, 13–44, pls.1–5. Chu, Y.T., Lo, Y.L. & Wu, H.L. (1963). A study on the classification of the Sciaenoid fishes of China, with description of new genera and species. Shanghai Science and Technology Press, Shanghai, 140 pp. Ciccotto, P.J, & Page, L.M. (2020). Revision of the genus Henicorhynchus, with a revised diagnosis of Gymnostomus (Cyprinidae: Labeoninae). Copeia, 108 (3), 485-502. Cooke, G.M., Chao, N.L., & Beheregaray, L.B. (2012). Marine incursions, cryptic species and ecological diversification in Amazonia: the biogeographic history of the croaker genus Plagioscion (Sciaenidae). J. Biogeogr., 39(4), 724-738. Cowman, P.F., & Bellwood, D.R. (2013a). The historical biogeography of coral reef fishes: Global patterns of origination and dispersal. J. Biogeogr. 40, 209–224. Cowman, P.F., & Bellwood, D.R. (2013b). Vicariance across major marine biogeographic barriers: Temporal concordance and the relative intensity of hard versus soft barriers. Proc. R. Soc. B: Biol. Sci. 280, 20131541. Demestre, M., Sanchez, P., & Abello, P. (2000). Demersal fish assemblages and habitat characteristics on the continental shelf and upper slope of the north-western Mediterranean. J. Mar. Biol. Assoc. U. K., 80(6), 981-988. Diester-Haass, L., Meyers, P.A., Rothe, P., (1990.) Miocene history of the Benguela Current and Antarctic ice volumes: evidence from rhytmic sedimentation and current growth across the Walvis Ridge (deep sea drilling project sites 362 and 532). Paleoceanography 5, 685–707. Drummond, A.J., Suchard, M.A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. B. Evol., 29(8), 1969-1973. Drummond, A.J., Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214. Dynesius, M., & Jansson, R. (2000). Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc Natl Acad Sci U S A. 97:9115–20. Edwards, S., & Beerli, P. (2000). Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution, 54(6), 1839-1854. Edwards, S.V., Liu, L., & Pearl, D.K. (2007). High-resolution species trees without concatenation. Proceedings of the National Academy of Sciences, 104(14), 5936-5941. Eklöv, P., & Svanbäck, R. (2006). Predation risk influences adaptive morphological variation in fish populations. The American Naturalist, 167(3), 440-452. Eschmeyer, W.N. (2017). Catalog of fishes electronic version (3 December 2017).Available http://research.calacademy.org/ichthyology/catalog/fishcatmain.asp (21 December 2017). Farris J.S. (1989). The retention index and the rescaled consistency index. Cladistic 5: 417-419. Farris, J.S. (1970). Method for computing Wagner tree. Systematics Zool., 19, 83-92. Félix-Hackradt, F.C., Hackradt, C.W., Treviño-Otón, J., Pérez-Ruzafa, A., & García-Charton, J.A. (2014). Habitat use and ontogenetic shifts of fish life stages at rocky reefs in South-western Mediterranean Sea. Neth. J. Sea Res., 88, 67-77. Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol., 17(6), 368-376. Fessler, J.L., & Westneat, M.W. (2007). Molecular phylogenetics of the butterflyfishes (Chaetodontidae): taxonomy and biogeography of a global coral reef fish family. Mol. Phylogenet Evol 45:50–68 Fowler, H.W. (1933). Contribution to the biology of the Philippine Archipelago and adjacent regions. U.S. Nat. Mus. Bull. 100, Volume 12, pp. 351-415. Fricke, R., Eschmeyer, W.N., & Van der Laan, R. (2023). Catalogue of fishes: genera, species, references. California Academy of Sciences, San Francisco, CA, USA electronic version. Availablehttp://research.calacademy.org/ichthyology/catalog/fishcatmain.asp (31 January 2023) (eds). Froese, R. & D. Pauly. Editors. (2022). FishBase. World Wide Web electronic publication. www.fishbase.org, (08/2022) Gaertner, J.C., Mazouni, N., Sabatier, R., & Millet, B. (1999). Spatial structure and habitat associations of demersal assemblages in the Gulf of Lions: a multicompartmental approach. Mar. Biol., 135(1), 199-208. García-Charton, J.A., & Pérez-Ruzafa, A. (2001). Spatial pattern and the habitat structure of a Mediterranean rocky reef fish local assemblage. Mar. Biol., 138(5), 917-934. Grant, W., & Bowen, B. (1998). Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered. 89: 415–26. Gratwicke, B., & Speight, M.R. (2005). The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. J. Fish Biol., 66(3), 650-667. Grewe, P. M., Krueger, C. C., Aquadro, C. F., Bermingham, E., Kincaid, H. L., & May, B. (1993). Mitochondrial DNA variation among lake trout (Salvelinus namaycush) strains stocked into Lake Ontario. Can. J. Fish. Aquat. Sci., 50(11), 2397-2403. Groeneveld, J.C., Gopal, K., George, R.W., & Matthee, C.A. (2007). Molecular phylogeny of the spiny lobster genus Palinurus (Decapoda: Palinuridae) with hypotheses on speciation in the NE Atlantic/Mediterranean and SW Indian Ocean. Mol. Phylogenet. Evol. 45, 102–110. Guidetti, P. (2000). Differences among fish assemblages associated with nearshore Posidonia oceanica seagrass beds, rocky–algal reefs and unvegetated sand habitats in the Adriatic Sea. Estuarine Coastal Shelf Sci., 50(4), 515-529. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biol., 59 (3), 307-321. Guo, C.C. (2017). Identification, classification and molecular phylogeny of Sciaenidae species from Chinese waters. MSc Dissertation, Xiamen University, Fujian, 202 pp. [in Chinese] Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series (Vol. 41, No. 41, pp. 95-98). [London]: Information Retrieval Ltd., c1979-c2000. Hamilton, F. (1822). An account of the Fishes found in the river Ganges and its branches, Atlas of 39 pls., Edinburgh and London, pp. vii-405. Hammer, Ø., Harper, D.A., & Ryan, P.D., 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electronica, 4 (1), 9. Han, Z.Q., Gao, T.X., Yanagimoto, T., & Sakurai, Y. (2008). Deep phylogeographic break among white croaker Pennahia argentata (Sciaenidae, Perciformes) populations in North-western Pacific. Fisheries Sci., 74(4), 770-780. Hu, J., Kawamura, H., Hong, H., & Qi, Y. (2000). A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion. Journal of Oceanography, 56, 607-624. Hsin, Y. C., Wu, C. R., & Chao, S. Y. (2012). An updated examination of the Luzon Strait transport. Journal of Geophysical Research: Oceans, 117(C3). Hanafi, N., Chen, M.H., Seah, Y.G., Chang, C.W., Liu, S.Y.V., & Chao, N.L. (2022). Johnius sasakii, a new species of croaker (Perciformes: Sciaenidae) with a key to Johnius from East Malaysia, Borneo. Zootaxa, 5116 (3), 393-409. https://doi.org/10.11646/zootaxa.5116.3.5 Hanafi, N., Chen, M. H., Seah, Y. G., Chang, C. W., Liu, S. Y. V., Lai, C. C., & Chao, N. L. (2023). Taxonomic Revision of the Genus Croaker Johnius (Perciformes: Sciaenidae) in Taiwanese Waters. J. Mar. Sci. Eng., 11(3), 471. He, L.J., Zhang, A.B., Weese, D., Zhu, C.D., Jiang, C.J., & Qiao, Z.G. (2010). Late Pleistocene population expansion of Scylla paramamosain along the coast of China: a population dynamic response to the last interglacial sea level high stand. J Exp Mar Biol Ecol. 385:20–8. Henriques, R., Potts, W.M., Santos, C.V., Sauer, W.H.H., & Shaw, P.W., (2014). Population connectivity and phylogeography of a coastal fish, Atractoscion aequidens (Sciaenidae), across the Benguela Current Region: evidence of an ancient vicariant event. PLoS ONE 9, e87907. Henriques, R., Potts, W.M., Sauer, W.H., Santos, C.V., Kruger, J., Thomas, J.A. & Shaw, P.W. (2016) Molecular genetics, life history and morphological variation in a coastal warm-temperate sciaenid fish: evidence for an upwelling-driven speciation event. J. Biogeogr., 43 (9), 1820–1831. https://doi.org/10.1111/jbi.12829 Hewitt, G.M. (2000). The genetic legacy of the quaternary ice ages. Nature. 405: 907–13. Horn, M.H. (1980). Diel and seasonal variation in abundance and diversity of shallow-water fish populations in Morro Bay, California. Fishery Bull., 78(3), 759-769. Hsu, K.-C., Shih, N.-T., Ni, I.-H., & Shao, K.-T. (2009). Speciation and population structure of three Trichiurus species based on mitochondrial DNA. Zool. Stud. 48, 835–849. Hubbs, C.L., Lagler, K.F. (2004). Fishes of the Great Lakes region. Rev. Edition by G.R. Smith. University of Michigan Press, Ann Arbor, Michigan, 332 pp. https://doi.org/10.3998/mpub.17658 Jamaludin, N.-A., Mohd-Arshaad, W., Akib, N.A.M., Abidin, D.H.Z., Nghia, N.V., & Nor, S.-A.M. (2020). Phylogeography of the Japanese scad, Decapterus maruadsi (Teleostei; Carangidae) across the Central Indo-West Pacific: Evidence of strong regional structure and cryptic diversity. Mitochondrial DNA Part A. 31, 298–310. Jan, S., Chern, C.-S., & Wang, J., (1998). A numerical study of currents in the Taiwan Strait during winter. Terrestrial, Atmospheric and Oceanic Sciences 9, 615– 632. Jan, S., Wang, J., Chern, C. S., & Chao, S. Y. (2002). Seasonal variation of the circulation in the Taiwan Strait. Journal of Marine Systems, 35(3-4), 249-268. Khaironizam, M.Z., Akaria-Ismail, M., & Armbruster, J.W. (2015). Cyprinid fishes of the genus Neolissochilus in Peninsular Malaysia. Zootaxa, 3962 (1), 139-157. Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16 (2), 111-120. Kimura, S., Arshad, A., Imamura, H., & Ghaffar, M.A. (2015). Fishes of the northwestern Johor Strait, peninsular Malaysia. University Putra Malaysia Press: Serdang, Malaysia. Koeda, K., & Ho, H.C. (2019). Fishes of Southern Taiwan II. National Museum of Marine Biology and Aquarium. 650pp. Kovalenko, K.E., Thomaz, S.M., & Warfe, D.M. (2012). Habitat complexity: approaches and future directions. Hydrobiologia, 685(1), 1-17. Krammer, R., Baumann, K., & Henrich, R., (2006). Middle to Late Miocene fluctuations in the incipient Benguela Upwelling System revealed by calcareous nannofossil assemblages (ODP Site 1085A). Palaeogeogr. Palaeoclim. Palaeoecol. 230, 319– 334. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 35 (6), 1547. La Mesa, M., Catalano, B., Russo, A., Greco, S., Vacchi, M., & Azzali, M. (2010). Influence of environmental conditions on spatial distribution and abundance of early life stages of Antarctic silverfish, Pleuragramma antarcticum (Nototheniidae), in the Ross Sea. Antarct. Sci., 22(3), 243-254. Labropoulou, M., & Eleftheriou, A. (1997). The foraging ecology of two pairs of congeneric demersal fish species: importance of morphological characteristics in prey selection. J. Fish Biol., 50(2), 324-340. Lal Mohan, R.S. (1972). A synopsis of the Indian genera of the fishes of the family Sciaenidae. Indian J. Fish., 16, 82–98. Lal Mohan, R.S. (1975). Two new species of Sciaenid fishes Johnius elongatus and Johnieops macrorhynus from India. Matsya 1, 19–25. Lal Mohan, R.S., Trewavas. E., & Whitehead, P.J.P. (1984). Sciaenidae. In: Fishers, W. & Bianchi, G. (Eds.), FAO species identification sheets for fishery purposes. Vol. 4. Western Indian Ocean (Fishing Area 51). FAO, Rome, pp. SCIAEN–SCIAEN Umbr 6. Lambeck, K., & Esat, T.M., Potter, E.K. (2002). Links between climate and sea levels for the past three million years. Nature. 419: 199–206. Lefort, V., Longueville, J.E., & Gascuel, O. (2017). SMS: smart model selection in PhyML. Mol. Biol. Evol., 34 (9), 2422-2424. Leray, M., Beldade, R., Holbrook, S. J., Schmitt, R. J., Planes, S., & Bernardi, G. (2010). Allopatric divergence and speciation in coral reef fish: The three‐spot Dascyllus, Dascyllus trimaculatus, species complex. Evolution: International Journal of Organic Evolution, 64(5), 1218-1230. Letourneur, Y., Darnaude, A., Salen-Picard, C., & Harmelin-Vivien, M. (2001). Spatial and temporal variations of fish assemblages in a shallow Mediterranean soft-bottom area (Gulf of Fos, France). Oceanologica Acta, 24(3), 273-285. Li, Y., Chen, G., Yu, J., Wu, S., Xiong, D., Li, X., Cui, K., & Li, Y. (2014). Population genetics of Thamnaconus hypargyreus (Tetraodontiformes: Monacanthidae) in the South China Sea. Mitochondrial DNA. 27, 798–805. Liem, K.F., 1990. Key evolutionary innovations, differential diversity, and symecomorphosis. In: Nitecki, M.H., Nitecki, D.V. (Eds.), Evolutionary Innovations. Univ. of Chicago Press, pp. 147–170. Lim, A.P.K., & Gambang, A.C. (2009). Field Guide to Marine & Estuarine Fishes of Sarawak. Fisheries Research Institute Bintawa. Lim, A.P.K., Ahmad, A., Nor Azman, Z., & Mohd Saki, N. (2018). Field Guide to Fishes and Crustaceans of the Southeast Asian Region. SEAFDEC/MFRDMD/39. 246pp Lim, H.-C.; Habib, A.; & Chen, W.-J. (2021). Comparative Phylogeography and Phylogeny of Pennah Croakers (Teleostei: Sciaenidae) in Southeast Asian Waters. Genes. 12, 1926. https://doi.org/10.3390/genes12121926. Lin, Y.C., Mok, H.K., & Huang, B.Q. (2007.) Sound characteristics of big-snout croaker Johnius macrorhynus (Sciaenidae). J. Acoust. Soc. Am., 121 (1), 586–593. https://doi.org/10.1121/1.2384844 Lin, B.A., Guo, C.C., Fang, L.P., Yang, W.D., & Liu, M. (2020). Complete mitochondrial genome and the phylogenetic position of a new species, Johnius taiwanensis (Perciformes: Sciaenidae) from Chinese waters. Mitochondrial DNA Part B. 5(1), 920-921. Lin, S.Y. (1938). Further notes on sciaenid fishes of China. Lingnan Sci. J., 17 (3), 378-81. Liou, Y.Y. (2016). Taxonomic revision of Taiwan Sciaenidae with a note on seasonal variation along Yun-Lin coast. MSc Dissertation, Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 118 pp. [in Chinese] Liu, J.X., Gao, T.X., Wu, S.F., & Zhang, Y.P. (2007). Pleistocene isolation in the northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck & Schlegel, 1845). Mol Ecol. 16:275–88. Lo, P.C., Liu, S.H., Chao, N.L., Nunoo, F.K., Mok, H.K., & Chen, W.J. (2015). A multi-gene dataset reveals a tropical New World origin and Early Miocene diversification of croakers (Perciformes: Sciaenidae). Mol. Phylogenet. Evol., 88, 132-143. https://doi.org/10.1016/j.ympev.2015.03.025 Lo, P.C., Liu, S.H., Nor, S.A.M. & Chen, W.J. (2017). Correction: Molecular exploration of hidden diversity in the Indo-West Pacific sciaenid clade. PLoS ONE 12(7): e0181511. Lo, P.C., Liu, S.H., Nor, S.A.M. & Chen, W.J. (2017). Molecular exploration of hidden diversity in the Indo-West Pacific sciaenid clade. PloS one, 12 (4), e0176623. https://doi.org/10.1371/journal.pone.0176623 Lovejoy, N.R. (1996). Systematics of myliobatoid elasmobranchs: with emphasis on the phylogeny and historical biogeography of neotropical freshwater stingrays (Potamotrygonidae: Rajiformes). Zool. J. Linnean Soc., 117(3), 207-257. Ma, C.Y., Cheng, Q.Q., & Zhang, Q.Y. (2012). Genetic diversity and demographical history of Coilia ectenes (Clupeiformes: Engraulidae) inferred from the complete control region sequences of mitochondrial DNA. Mitochondrial DNA. 23: 396–404. Maci, S., & Basset, A. (2009). Composition, structural characteristics and temporal patterns of fish assemblages in non-tidal Mediterranean lagoons: A case study. Estuarine Coastal Shelf Sci., 83(4), 602-612. Malaquias, M.A.E., Reid, D.G., 2009. Tethyan vicariance, relictualism and speciation: evidence from a global molecular phylogeny of the opisthobranch genus Bull. J. Biogeogr. 36, 1760–1777. Mansor, M.I., Kohno, H., Ida, H., Nakamura, H.T., Aznan, Z. & Abdullah, S. (1998). Field guide to important commercial marine fishes of the South Cvhina Sea. SEAFDEC xiv+287. Marmi, J., Vila, B., Oms, O., Galobart, À., & Cappetta, H. (2010). Oldest records of stingray spines (Chondrichthyes, Myliobatiformes). J. Vert. Paleontol., 30(3), 970-974. Matsunuma, M., Motomura, H., Matsuura, K., Shazili, N.A.M. & Ambak, M.A. (Eds.) (2011). Fishes of Terengganu – east coast of Malay Peninsula, Malaysia. National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum, Kagoshima, ix + 251 pp. McCormick, M.I. (1994). Comparison of field methods for measuring surface topography and their associations with a tropical reef fish assemblage. Mar. Ecol. Progr. Ser. Oldendorf, 112(1), 87-96. McMillan, W.O., & Palumbi, S.R. (1995). Concordant evolutionary patterns among Indo-West Pacific butterflyfishes. Proc. R. Soc. B-Biol. Sci. 260:229–236 Menezes, G.M., Sigler, M.F., Silva, H.M., & Pinho, M.R. (2006). Structure and zonation of demersal fish assemblages off the Azores Archipelago (mid-Atlantic). Mar. Ecol. Prog. Ser., 324, 241-260. Mérigot, B., Bertrand, J.A., Gaertner, J.C., Durbec, J.P., Mazouni, N., & Manté, C. (2007). The multi-component structuration of the species diversity of groundfish assemblages of the east coast of Corsica (Mediterranean Sea): Variation according to the bathymetric strata. Fish. Res., 88(1-3), 120-132. Mohamad Faisal, M.S., Yusri, A., Abdul Rahman, A.M., Lim, A.P.K., Irman, I., & Nurul Syuhada, H.A.K. (et al.). (2009). Valid Local Name of Malaysian Marine Fishes. Putrajaya: Department of Fisheries Malaysia Mohsin, A.K.M., & Ambak, M.A. (1996). Marine fishes and fisheries of Malaysia and neighbouring countries. 744 pp. Universiti Pertanian Malaysia Press, Serdang, Selangor Darul Ehsan, Malaysia. Mok, H.K., Yu, H.Y., Ueng, J.P., & Wei, R.C. (2009). Characterization of sounds of the blackspotted croaker Protonibea diacanthus (Sciaenidae) and localization of its spawning sites in estuarine coastal waters of Taiwan. Zool. Stud., 48(3), 325-333. Montaña, C.G., & Winemiller, K.O. (2010). Local‐scale habitat influences morphological diversity of species assemblages of cichlid fishes in a tropical floodplain river. Ecol. Freshwater Fish, 19(2), 216-227. Montaña, C.G., Winemiller, K.O., & Sutton, A. (2014). Intercontinental comparison of fish ecomorphology: null model tests of community assembly at the patch scale in rivers. Ecol. Monogr., 84(1), 91-107. Motomura, H., & Ishikawa, S. (2013). Fish collection building and procedures manual. English edition. The Kagoshima University Museum, Kagoshima and the Research Institute for Humanity and Nature, Kyoto. Motomura, H., Alama, U.B., Muto, N., Babaran, R.P., & Ishikawa, S. (eds). 2017 (Jan.). Commercial and bycatch market fishes of Panay Island, Republic of the Philippines. The Kagoshima University Museum, Kagoshima, University of the Philippines Visayas, Iloilo, and Research Institute for Humanity and Nature, Kyoto. 246 pp, 911 figs. Naish, T, Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F., Krissek, L., Niessen, F., Pompilio, M., & Wilson, T. et al. (2009). Obliquity paced Pliocene West Antarctic ice sheet oscillations. Nature 458:322–328 Ng, H.H., Tan, H.H., Lim, K.K., Ludt, W.B., & Chakrabarty, P. (2015). Fishes of the eastern Johor Strait. Raffles Bull. Zool., 2015, 303. Niu, S.-F., Wu, R.-X., Zhai, Y., Zhang, H., Li, Z.-L., Liang, Z.-B., & Chen, Y.-H. (2019). Demographic history and population genetic analysis of Decapterus maruadsi from the northern South China Sea based on mitochondrial control region sequence. PeerJ. 7, e7953. Norton, S.F. (1995). A functional approach to ecomorphological patterns of feeding in cottid fishes. In Ecomorphology of fishes (pp. 61-78). Springer, Dordrecht. Palumbi, S.R. (1994). Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst. 25: 547–72. Parenti, P. (2020). An annotated checklist of fishes of the family Sciaenidae. J. Ani. Diversity. 2(1), 1-92. Peres-Neto, P.R. (2004). Patterns in the co-occurrence of fish species in streams: the role of site suitability, morphology and phylogeny versus species interactions. Oecologia, 140(2), 352-360. Pitcher, T.J. (1986). Functions of shoaling behaviour in teleosts. In The behaviour of teleost fishes (pp. 294-337). Springer, Boston, MA. Posada, D. & Crandall, K.A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817-818. Potts, D.C. (1983). Evolutionary disequilibrium among Indo-Pacific corals. Bull Mar Sci 33:619–632 Price, K., Jackson, C.R., Parker, A.J., Reitan, T., Dowd, J., & Cyterski, M. (2011). Effects of watershed land use and geomorphology on stream low flows during severe drought conditions in the southern Blue Ridge Mountains, Georgia and North Carolina, United States. Water Resour. Res., 47(2). Randall, J.E. & Lim, K.K.P. (2000). A checklist of the fishes of the South China Sea. Raffles Bull. Zool. Suppl.,8, 569–667. Ravago-Gotanco, R., de la Cruz, T. L., Pante, M. J., & Borsa, P. (2018). Cryptic genetic diversity in the mottled rabbitfish Siganus fuscescens with mitochondrial introgression at a contact zone in the South China Sea. PloS One, 13(2), e0193220. Renema, W., Bellwood, D.R., Braga, J.C., Bromfield, K., Hall, R., Johnson, K.G, Lunt, P., Meyer, C.P., McMonagle, L.B., Morley, R.J., O’Dea, A., Tood, J.A., Wesselingh, F.P., Wilson, M.E.J., & Pandolfi, J.M. (2008). Hopping hotspots: global shifts in marine biodiversity. Science 321:654–657 Rocha, L.A., & Bowen, B.W. (2008). Speciation in coral-reef fishes. J. Fish Biol. 72, 1101–1121. Ronquist, F., & Huelsenbeck, J.P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572-1574. Sabaj, M.H. (2019). Standard symbolic codes for institutional resource collections in herpetology and ichthyology: an online reference. Version 7.1. 21 March 2019. American Society of Ichthyologists and Herpetologists, Washington, D.C. Electronically accessible. Available from: http://www.asih.org/ (accessed 1 January 2022). Santini, F., Nguyen, M.T.T., Sorenson, L., Waltzek, T.B., Lynch Alfaro, J.W., Eastman, J.M., & Alfaro, M.E. (2013a). Do habitat shift drive diversification in teleost fishes? An example from the pufferfishes (Tetraodontidae). J Evol Biol 26:1003–1018. Santini, F., Sorenson, L., & Alfaro, M. E. (2013). A new phylogeny of tetraodontiform fishes (Tetraodontiformes, Acanthomorpha) based on 22 loci. Mol. Phylogenet. Evol., 69(1), 177-187. Santini, F., Sorenson, L., & Alfaro, M.E. (2013b). A new multi-locus timescale reveals the evolutionary basis of diversity patterns of triggerfishes and filefishes (Balistidae, Monacanthidae; Tetraodontiformes). Mol Phylogenet Evol 69:165–176 Santini, F., Sorenson, L., Marcroft, T., Dornburg, A., Alfaro, M.E. (2013c). A multilocus molecular phylogeny of boxfishes (Aracanidae, Ostraciidae; Tetraodontiformes). Mol Phylogenet Evol 66:153–160 Santos, S., de Fátima Gomes, M., dos Santos Ferreira, A. R., Sampaio, I., & Schneider, H. (2013). Molecular phylogeny of the western South Atlantic Sciaenidae based on mitochondrial and nuclear data. Mol Phylogenet Evol, 66(1), 423-428. Sasaki K. (2001). Sciaenidae. In: Carpenter, K.E. & Niem, V.H. FAO Species Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Central Pacific. Volume 5: Bony Fishes Part 3 (Menidae to Pomacentridae). Rome, FAO, pp. 3117–3174. Sasaki, K. (1989). Phylogeny of the Family Sciaenidae, with notes on its zoogeography (Teleostei, Perciformes). Mem. Fac. Fish. Hokkaido Uni., 36 (1–2), 1–137. https://doi.org/10.1007/BF02905681 Sasaki, K. (1990). Johnius grypotus (Richardson, 1846), resurrection of a Chinese sciaenid species. Japanese J. Ichthyol., 37 (3), 224–229. Sasaki, K. (1992). Two new and two resurrected species of the sciaenid genus Johnius (Johnius) from the West Pacific. Japanese J. Ichthyol., 39 (3), 191–199. https://doi.org/10.1007/BF02905476 Sasaki, K. (1996). Sciaenid fishes of the Indian Ocean (Teleostei, perciformes). Mem. Fac. Sci. Kochi Univ., Ser. D (Biol.), 16, 83-96. Sasaki, K. (1999). Johnius (Johnieops) philippinus, a new species sciaenid from the Philippines, with a synopsis of species included in the subgenus a Johnieops. Ichthyol. Res., 46 (3), 271–279. https://doi.org/10.1007/BF02678513 Sasaki, K. (1999). Johnius (Johnieops) philippinus, a new sciaenid from the Philippines, with a synopsis on species included in subgenus Johnieops. Japanese J. Ichthyol. 46 (3): 271-279. Sasaki, K. (2000). A checklist of the fishes of the South China Sea, 621 p. In: Randall, J.E.& Lim, K.K.P. (Eds.), Raffles Bull. Zool. Suppl., (8), 569–667. Schluter, D., (2000). Ecological character displacement in adaptive radiation. Am. Nat. 156, S4–S16. Schneider, N. (1998). The Indonesian Throughflow and the global climate system. Journal of Climate, 11(4), 676-689. Seah, Y.G., Hanafi, N., Mazlan, A.G., & Chao, N.L. (2015). A new species of Larimichthys from Terengganu, east coast of Peninsular Malaysia (Perciformes: Sciaenidae). Zootaxa, 3956 (2), 271–280. https://doi.org/10.11646/zootaxa.3956.2.7 Seah, Y.G., Mohd Sharol, A., Mazlan, A.G. & Mat Jaafar, T.N.A. (2021). Marine Fishes of Kuantan: Malaysia Biodiversity Information System (MyBIS). Penerbit UMT. pp. 172. Shah, N. H. A. (2017). Revision of croakers (perciformes: sciaenidae) identification by using integrative approaches (Master dissertation, Terengganu: Universiti Malaysia Terengganu). Shao KT, Chen JY. (2003.) The fish illustrations - Taiwan more than seven hundred kinds of common fish illustrations. Yuan-Liou Publishing Company.431pp. Shao, K.T., Ho, H. C., Lin, P. L., Lee, P. F., Lee, M. Y., Tsai, C. Y., Liao, Y.C. & Lin, Y. C. (2008). A checklist of the fishes of southern Taiwan, northern South China Sea. The Raffles Bulletin of Zoology, (19), 233-271. Shao K.T. (2012). The Fishes of Matsu. Lienchiang County Government.240pp Shao K.T. (2022). The Fish Database of Taiwan. WWW Web electronic publication. http://fishdb.sinica.edu.tw, (2022-5-25) Shao, K.T., Lin, J., Wu, C.H., Yeh, H.M., & Cheng, T.Y. (2012). A dataset from bottom trawl survey around Taiwan. ZooKeys 198: 103–109. doi: 10.3897/zookeys.198.3032. Shen SC. (1993). Fishes of Taiwan. Published by National Taiwan University.960pp. Shen, S.C. (1984). Coastal Fishes of Taiwan. National Taiwan University. 190pp Shen, S.C., & Wu, R.K. (2011). Fishes of Taiwan. National Museum of Marine Biology & Aquarium.896pp. Song, N., Ma, G., Zhang, X., Gao, T., & Sun, D. (2014). Genetic structure and historical demography of Collichthys lucidus inferred from mtDNA sequence analysis. Environ. Biol. Fishes, 97(1), 69-77. Sorenson, L., Allen, G.R., Erdmann, M.V., Dai, C.F., & Liu, S.Y.V. (2014). Pleistocene diversification of the Pomacentrus coelestis species complex (Pisces: Pomacentridae): historical biogeography and species boundaries. Mar. Biol., 161(11), 2495-2507. Steininger, F.F., Rögl, F., (1979). The paratethys history. A contribution towards the Neogene geodynamics of the alpine orogene. Ann. Geol. Pays Hell 3, 1153–1165 Sun, D., Ge, Y., & Cheng, Q. (2019). Genetic diversity of eight wild populations of Pampus argenteus along the coast of China inferred from fifteen polymorphic microsatellite markers. Braz. J. Oceanogr. 67. Sun, P., Tang, B., & Yin, F. (2017). Population genetic structure and genetic diversity of Chinese pomfret at the coast of the East China Sea and the South China Sea. Mitochondrial DNA Part A. 29, 643–649. Svanbäck, R., & Eklöv, P. (2002). Effects of habitat and food resources on morphology and ontogenetic growth trajectories in perch. Oecologia, 131(1), 61-70. Talwar, P. K. (1995). Fauna of India and the adjacent countries. Pisces Perciformes: Sciaenidae. Zool. Surv. India, Calcutta: i-vii (unnumbered) + 1-144. Talwar, P.K. (1969). On the generic relationship of Bola coitor Hamilton (Pisces: Sciaenidae) with a redescription of the species (MS). Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24 (8), 1596–1599. https://doi.org/10.1093/molbev/msm092 Taniguchi, N., (1969a). Comparative osteology of the sciaenid fishes from Japan and its adjacent waters—I Neurocranium. Japanese J. Ichthyol. 16: 55–67. Taniguchi, N., (1969b). Comparative osteology of the sciaenid fishes from Japan and its adjacent waters—II. Vertebrae. Japanese J. Ichthyol. 16: 153–156. Taniguchi, N., (1970). Comparative osteology of the sciaenid fishes from Japan and its adjacent waters—III. Premaxillary and dentary. Japanese J. Ichthyol. 17: 135–140. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., & Higgins, D.G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 25(24), 4876-4882. Tolley, K.A., Groeneveld, J.C., Gopal, K., Matthee, C.A., (2005). Mitochondrial DNA panmixia in spiny lobster Palinurus gilchristi suggests a population expansion. Mar. Ecol. Prog. Ser. 297, 225–231. Tornabene, L., Valdez, S., Erdmann, M.V., & Pezold, F.L. (2016). Multi-locus sequence data reveal a new species of coral reef goby (Teleostei: Gobiidae: Eviota), and evidence of Pliocene vicariance across the Coral Triangle. J. Fish Biol. 88, 1811–1834. Tran, D.D., Shibukawa, K., Nguyen, P.T., Ha, H.P., Tran, L. X., Mai, H. V., & Utsugi, K. (2013). Fishes of the Mekong Delta, Vietnam. Can Tho University Publishing House, Can Tho, 173 pages. Trewavas E. (1977). The sciaenid fishes (croakers or drums) of the Indo-West-Pacific. Trans. Zool. Soc. London, 33, 253–541. https://doi.org/10.1111/j.1096-3642.1977.tb00052.x Trewavas, E. (1964). The sciaenid fishes with a single mental barbel, Copeia, pp. 107-17. Tseng, H.C., You, W.L., Huang, W., Chung, C.C., Tsai, A.Y., Chen, T.Y., Lan, K.W., & Gong, G.C. (2020). Seasonal variations of marine environment and primary production in the Taiwan Strait. Front. Mar. Sci., 7, 38. https://doi.org/10.3389/fmars.2020.00038 Underwood, C.J., Mitchell, S.F., & Veltcamp, K.J. (1999). Shark and ray teeth from the Hauterivian (Lower Cretaceous) of north‐east England. Palaeontology, 42(2), 287-302. Vergara-Chen, C., Aguirre, W. E., González-Wangüemert, M., & Bermingham, E. (2009). A mitochondrial DNA based phylogeny of weakfish species of the Cynoscion group (Pisces: Sciaenidae). Mol. Phylogenet. Evol., 53(2), 602-607. Vinson, C., Gomes, G., Schneider, H., & Sampaio, I. (2004). Sciaenidae fish of the Caeté River estuary, Northern Brazil: mitochondrial DNA suggests explosive radiation for the Western Atlantic assemblage. Gen. Mol. Biol., 27, 174-180. Von der Heydt, & A., Dijkstra, H.A., (2006). Effect of ocean gateways on the global ocean circulation in the late Oligocene and early Miocene. Paleoceanography 21, PA1011. Voris, H.K. (2000). Maps of Pleistocene Sea levels in Southeast Asia: shorelines, river systems and time durations. J. Biogeogr. 27:1153–1167 Walton, S.E., Gan, H.M., Raghavan, R., Pinder, A.C., & Ahmad, A. (2017). Disentangling the taxonomy of the mahseers (Tor spp.) of Malaysia: An integrated approach using morphology, genetics and historical records. Rev. Fish. Sci. Aquacult., 25 (3), 171-183. Wang, K., Zhang, S., Wang, Z., Zhao, J., & Xu, M. (2012). A preliminary study on fishery biology of Johnius belangerii off Ma'an Archipelago. J. Fish. China, 36(2), 228-237. Wang, P.X. (1990). The ice-age China Sea status and problems. Quat Sci. 2: 111–24. Wang, X. H., Qiu, Y. S., Zhu, G. P., Du, F. Y., Sun, D. R., & Huang, S. L. (2011). Length‐weight relationships of 69 fish species in the Beibu Gulf, northern South China Sea. J. Appl. Ichthyol., 27(3), 959-961. Wei, Z., Fang, G., Xu, T., Wang, Y., & Lian, Z. (2016). Seasonal variability of the isopycnal surface circulation in the South China Sea derived from a variable-grid global ocean circulation model. Acta Oceanologica Sinica, 35, 11-20. Willette, D.A., Santos, M., & Leadbitter, D. (2016). Longtail tuna Thunnus tonggol (Bleeker, 1851) shows genetic partitioning across, but not within, basins of the Indo-Pacific based on mitochondrial DNA. J. Appl. Ichthyol. 32, 318–323. Williams, S.T., & Duda, T.F., Jr. (2008). Did tectonic activity stimulate oligomiocene speciation in the indo-west pacific. Evolution. 62, 1618–1634. Woodland, D.J. (1983). Zoogeography of the Siganidae (Pisces): an interpretation of distribution and richness patterns. Bull Mar Sci 33:713–717. Wu, Y., & Fallon, S. J. (2020). Prebomb to postbomb 14C history from the west side of Palawan Island: insights into oceanographic changes in the South China Sea. Journal of Geophysical Research: Oceans, 125(6), e2019JC015979. Xu, M. (2014). The biology research of Johnius belangerii and Dendrophysa russelii in Liusha Bay (Doctoral dissertation, MSc Dissertation, Guangdong Ocean University (in Chinese with English abstract)). Yamanoue, Y., Setiamarga, D.H.E., & Matsuura, K. (2010). Pelvic fins in teleosts: structure, function and evolution. J. Fish Biol., 77(6), 1173-1208. Yoshida, T., Motomura, H., Musikasinthorn, P., & Matsuura, K. (2013). Fishes of Northern Gulf of Thailand. National Museum of Nature, Tsukuba, Research Institute for Humanity and Nature, Kyoto, and Kagoshima University Museum, Kagoshima. Viii + 239 pages. Yu, L.C., & Shen, S.C. (1987). Study on sciaenoid fishes from the adjacent waters around Taiwan. Ann. Taiwan. Mus., 30: 665-133. (In Chinese with English abstract). Yu, Y.; Harris, A.J.; Blair, C.; He, X. (2015). RASP (Reconstruct Ancestral State in Phylogenies): A Tool for Historical Biogeography. Mol. Phylogenet. Evol. 87, 46–49. Zhang, L.L., Liu, M., Fang, L.P., Xu, Q., & Lin, J.J. (2019). Reproductive Biology of Johnius taiwanensis (Perciformes: Sciaenidae) in Fujian Waters, Southern China. Zool. Stud., 58. doi:10.6620/ZS.2019.58-38. Zhao, L., Yi, D., Li, C., Sun, D., Xu, H., Gao, T. (2017). Phylogeography and population structure of Johnius grypotus (Richardson, 1846) as revealed by mitochondrial control region sequences. ZooKeys 705: 143–158. https:// doi.org/10.3897/zookeys.705.13001. Zhou, J., Liu, X., Stones, D.S., Xie, Q., & Wang, G. (2011). MrBayes on a graphics processing unit. Bioinformatics. 27, 1255–1261. Zu, T., Xue, H., Wang, D., Geng, B., Zeng, L., Liu, Q., Chen, J., & He, Y. (2019). Interannual variation of the South China Sea circulation during winter: intensified in the southern basin. Climate Dynamics, 52, 1917-1933. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2028-06-19 校外 Off-campus:開放下載的時間 available 2028-06-19 您的 IP(校外) 位址是 216.73.216.204 現在時間是 2025-06-30 論文校外開放下載的時間是 2028-06-19 Your IP address is 216.73.216.204 The current date is 2025-06-30 This thesis will be available to you on 2028-06-19. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2028-06-19 |
QR Code |