Responsive image
博碩士論文 etd-0526123-140728 詳細資訊
Title page for etd-0526123-140728
論文名稱
Title
採用任務科技適配理論探討 客服機械人對客服人員的績效影響
Use Task-Technology Fit Theory to Explore the Impact of Chatbot on Customer Service Agents' Performance
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2023-06-16
繳交日期
Date of Submission
2023-06-26
關鍵字
Keywords
工作壓力、工作績效、認知負荷、智能客服、任務科技適配
Job Stress, Job Performance, Cognitive Load, Customer Service Robots, Task-Technology Fit Theory
統計
Statistics
本論文已被瀏覽 216 次,被下載 14
The thesis/dissertation has been browsed 216 times, has been downloaded 14 times.
中文摘要
在現代商業環境中,科技的進步為企業提供了無數的機會與挑戰。尤其是在客服領域,自動化和智慧化的系統已經成為趨勢,並在許多業界中被廣泛採用。這些智能客服雖具有提高效率、節省成本和提供強大輔助服務的能力,但對於人員的工作績效可能產生重要的影響,然而,目前相關的實證研究仍然不足。
本研究旨在採用任務科技適配理論,探討客服機械人對客服人員工作績效的影響。任務科技適配理論認為,任務和科技的適配度對於工作績效有顯著的影響。本研究將此理論應用於客服機械人的情境,以期深入了解科技的應用如何影響客服人員的工作績效。
此外,本研究也將探討其他可能影響工作績效的因素,如認知負荷和工作壓力。認知負荷被視為一種可能影響工作績效的重要因素,且可能受到任務科技適配的影響,工作壓力也可能受到認知負荷的影響,並進一步影響工作績效。
經收回有效問卷共344份,利用統計軟體 SPSS 26.0 及 SmartPLS 4.0分析,研究結果發現,在客服領域應用智能技術時,要充分考慮其與工作任務的適配程度、管理員工的認知負荷和工作壓力等多重因素,才能有效地提升客服人員的工作績效,這對於企業在人工智能技術投資決策、客服人員管理以及服務質量改善等方面,都提供了實證上的指導和理論上的支持。


Abstract
In the modern business environment, technological advancements have offered countless opportunities and challenges for enterprises. Particularly in the customer service sector, automated and intelligent systems have become a trend and are widely adopted in many industries. While these intelligent customer services possess capabilities to improve efficiency, save costs, and provide strong assistance, they might have significant impacts on the job performance of personnel. However, current empirical research on this topic is still lacking.
This study aims to apply the Task-Technology Fit theory to explore the impact of customer service robots on the job performance of customer service personnel. The Task-Technology Fit theory posits that the fit between tasks and technology has a significant effect on job performance. This study applies this theory to the scenario of customer service robots in order to gain a deeper understanding of how technology applications impact the job performance of customer service personnel.
In addition, this study also explores other potential factors that might impact job performance, such as cognitive load and job stress. Cognitive load is seen as a significant factor that may affect job performance and could be influenced by the Task-Technology Fit. Work stress might also be affected by cognitive load and subsequently influence job performance.
After collecting a total of 344 valid questionnaires and analyzing them with statistical software SPSS 26.0 and SmartPLS 4.0, the results revealed that when applying intelligent technology in the customer service field, it is vital to fully consider the compatibility between the technology and work tasks, managing employees' cognitive load, and job stress among other factors in order to effectively enhance the job performance of customer service personnel. This provides empirical guidance and theoretical support for enterprises in decision-making related to artificial intelligence technology investments, management of customer service personnel, and improvements in service quality.

目次 Table of Contents
論文審定書 i
中文摘要 ii
英文摘要 iii
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機與問題 2
第三節 研究目的 3
第四節 研究流程 4
第二章 文獻探討 6
第一節 任務科技適配(Task-Technology Fit Theory) 6
第二節 任務科技適配(Task-Technology Fit Theory)參考文獻 7
第三節 認知負荷(Cognitive Load Theory)理論 8
第四節 任務科技適配對認知負荷的影響 10
第五節 認知負荷對壓力的影響 12
第六節 工作壓力及績效的關係 13
第三章 研究方法 15
第一節 研究模型 15
第二節 研究假說 15
第三節 操作型定義 22
第四節 資料蒐集 31
第四章 資料分析 33
第一節 敘述性統計 33
第二節 模型衡量 35
第三節 假說驗證 50
第四節 中介效果驗證 53
第五章 結論與建議 55
第一節 研究結果與建議 55
第二節 學術和實務上的意涵 55
第三節 研究限制 57
第四節 未來研究方向 59
參考文獻 61
附件 68

參考文獻 References
一、英文文獻
Ayres, P. (2006). Using subjective measures to detect variations of intrinsic cognitive load within problems. Learning and instruction, 16(5), 389-400.
Baddeley, A. D., & Hitch, G. (1974). Working memory. In Psychology of learning and motivation (Vol. 8, pp. 47-89). Elsevier.
Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology, 51(6), 1173.
Barrick, M. R., & Mount, M. K. (1991). The big five personality dimensions and job performance: a meta‐analysis. Personnel psychology, 44(1), 1-26.
Bauer, A., Wollherr, D., & Buss, M. (2008). Human–robot collaboration: a survey. International Journal of Humanoid Robotics, 5(01), 47-66.
Beehr, T. A., Jex, S. M., Stacy, B. A., & Murray, M. A. (2000). Work stressors and coworker support as predictors of individual strain and job performance. Journal of organizational behavior, 21(4), 391-405.
Belling, P. K., Suss, J., & Ward, P. (2015). The effect of time constraint on anticipation, decision making, and option generation in complex and dynamic environments. Cognition, Technology & Work, 17, 355-366.
Campbell, D. J. (1988). Task complexity: A review and analysis. Academy of management review, 13(1), 40-52.
Cheng, X., Fu, S., & de Vreede, G.-J. (2017). Understanding trust influencing factors in social media communication: A qualitative study. International Journal of Information Management, 37(2), 25-35.
Cheng, X., Su, L., & Yang, B. (2020). An investigation into sharing economy enabled ridesharing drivers’ trust: A qualitative study. Electronic Commerce Research and Applications, 40, 100956.
Chow, T., & Cao, D.-B. (2008). A survey study of critical success factors in agile software projects. Journal of systems and software, 81(6), 961-971.
Cigdem, H., & Topcu, A. (2015). Predictors of instructors’ behavioral intention to use learning management system: A Turkish vocational college example. Computers in human behavior, 52, 22-28.
Costa, P. T., & McCrae, R. R. (1992). Normal personality assessment in clinical practice: The NEO Personality Inventory. Psychological assessment, 4(1), 5.
D'ambra, J., & Wilson, C. S. (2004). Use of the World Wide Web for international travel: Integrating the construct of uncertainty in information seeking and the task‐technology fit (TTF) model. Journal of the American Society for Information Science and Technology, 55(8), 731-742.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of management information systems, 19(4), 9-30.
Devaraj, S., Easley, R. F., & Crant, J. M. (2008). Research note—how does personality matter? Relating the five-factor model to technology acceptance and use. Information Systems Research, 19(1), 93-105.
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., & Leitão, P. J. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27-46.
Foerderer, J., Kude, T., Schuetz, S. W., & Heinzl, A. (2019). Knowledge boundaries in enterprise software platform development: Antecedents and consequences for platform governance. Information Systems Journal, 29(1), 119-144.
Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. In: Sage Publications Sage CA: Los Angeles, CA.
Fu, W., & Menzies, T. (2017). Easy over hard: A case study on deep learning. Proceedings of the 2017 11th joint meeting on foundations of software engineering,
Gagnon, M.-P., Gagnon, J., Desmartis, M., & Njoya, M. (2013). The impact of blended teaching on knowledge, satisfaction, and self-directed learning in nursing undergraduates: a randomized, controlled trial. Nursing education perspectives, 34(6), 377-382.
Galy, E., Downey, C., & Johnson, J. (2011). The effect of using e-learning tools in online and campus-based classrooms on student performance. Journal of Information Technology Education: Research, 10(1), 209-230.
Gerjets, P., Scheiter, K., & Catrambone, R. (2004). Designing instructional examples to reduce intrinsic cognitive load: Molar versus modular presentation of solution procedures. Instructional Science, 32, 33-58.
Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS quarterly, 213-236.
Grandey, A. A. (2000). Emotional regulation in the workplace: A new way to conceptualize emotional labor. Journal of occupational health psychology, 5(1), 95.
Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the academy of marketing science, 40, 414-433.
Hollender, N., Hofmann, C., Deneke, M., & Schmitz, B. (2010). Integrating cognitive load theory and concepts of human–computer interaction. Computers in human behavior, 26(6), 1278-1288.
Hou, C., Cao, B., & Fan, J. (2022). A data‐driven method to predict service level for call centers. IET Communications, 16(10), 1241-1252.
Huselid, M. A., Jackson, S. E., & Schuler, R. S. (1997). Technical and strategic human resources management effectiveness as determinants of firm performance. Academy of Management journal, 40(1), 171-188.
Jarodzka, H., Scheiter, K., Gerjets, P., & Van Gog, T. (2010). In the eyes of the beholder: How experts and novices interpret dynamic stimuli. Learning and instruction, 20(2), 146-154.
Jex, S. M., & Bliese, P. D. (1999). Efficacy beliefs as a moderator of the impact of work-related stressors: a multilevel study. Journal of applied psychology, 84(3), 349.
Kim, H., & Hannafin, M. J. (2011). Developing situated knowledge about teaching with technology via web-enhanced case-based activity. Computers & Education, 57(1), 1378-1388.
Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational psychologist, 41(2), 75-86.
Klopping, I. M., & McKinney Jr, E. (2006). PRACTICE MAKES A DIFFERENCE: EXPERIENCE AND E-COMMERCE. Information Technology, Learning & Performance Journal, 24(1).
Kompier, M. A., Cooper, C. L., & Geurts, S. A. (2000). A multiple case study approach to work stress prevention in Europe. European Journal of Work and Organizational Psychology, 9(3), 371-400.
Kude, T., Mithas, S., Schmidt, C. T., & Heinzl, A. (2019). How pair programming influences team performance: The role of backup behavior, shared mental models, and task novelty. Information Systems Research, 30(4), 1145-1163.
Lazarus, R. S., & Folkman, S. (1984). Stress, appraisal, and coping. Springer publishing company.
Leggett, K. (2016). Trends 2016: The future of customer service. Forrester Research, Inc. http://www. aspect. com/globalassets/hidden-files/trends-2016-the-future-of. pdf (accessed 19th January, 2023).
LePine, J. A., Podsakoff, N. P., & LePine, M. A. (2005). A meta-analytic test of the challenge stressor–hindrance stressor framework: An explanation for inconsistent relationships among stressors and performance. Academy of Management journal, 48(5), 764-775.
LePine, J. A., & Van Dyne, L. (2001). Voice and cooperative behavior as contrasting forms of contextual performance: evidence of differential relationships with big five personality characteristics and cognitive ability. Journal of applied psychology, 86(2), 326.
Leppink, J., Paas, F., Van der Vleuten, C. P., Van Gog, T., & Van Merriënboer, J. J. (2013). Development of an instrument for measuring different types of cognitive load. Behavior research methods, 45, 1058-1072.
Lin, W.-S., & Wang, C.-H. (2012). Antecedences to continued intentions of adopting e-learning system in blended learning instruction: A contingency framework based on models of information system success and task-technology fit. Computers & Education, 58(1), 88-99.
Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational psychologist, 38(1), 43-52.
Mayer, R. E., & Moreno, R. E. (2010). Techniques that reduce extraneous cognitive load and manage intrinsic cognitive load during multimedia learning.
McCrae, R. R., & Costa Jr, P. T. (1997). Personality trait structure as a human universal. American psychologist, 52(5), 509.
Mistilis, N., & D'ambra, J. (2008). The visitor experience and perception of information quality at the Sydney visitor information centre. Journal of Travel & Tourism Marketing, 24(1), 35-46.
Moreno, R. (2004). Decreasing cognitive load for novice students: Effects of explanatory versus corrective feedback in discovery-based multimedia. Instructional Science, 99-113.
Nunnally, J. C. (1978). An overview of psychological measurement. Clinical diagnosis of mental disorders: A handbook, 97-146.
Orpen, C. (1994). The effect of time-management training on employee attitudes and behavior: A field experiment. The Journal of psychology, 128(4), 393-396.
Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational psychologist, 38(1), 63-71.
Paas, F., & Van Gog, T. (2006). Optimising worked example instruction: Different ways to increase germane cognitive load. In (Vol. 16, pp. 87-91): Elsevier.
Paas, F. G., Van Merriënboer, J. J., & Adam, J. J. (1994). Measurement of cognitive load in instructional research. Perceptual and motor skills, 79(1), 419-430.
Parkes, A. (2013). The effect of task–individual–technology fit on user attitude and performance: An experimental investigation. Decision support systems, 54(2), 997-1009.
Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of applied psychology, 88(5), 879.
Rai, R. S., & Selnes, F. (2019). Conceptualizing task-technology fit and the effect on adoption–A case study of a digital textbook service. Information & Management, 56(8), 103161.
Rolland, J.-P. (2002). The cross-cultural generalizability of the Five-Factor model of personality.
Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13-35.
Sethi, V., & Carraher, S. (1993). Developing measures for assessing the organizational impact of information technology: A comment on Mahmood and Soon's paper. Decision Sciences, 24(4), 867-877.
Spies, R., Grobbelaar, S., & Botha, A. (2020). A scoping review of the application of the task-technology fit theory. Responsible Design, Implementation and Use of Information and Communication Technology: 19th IFIP WG 6.11 Conference on e-Business, e-Services, and e-Society, I3E 2020, Skukuza, South Africa, April 6–8, 2020, Proceedings, Part I 19,
Stanton, J. M., Balzer, W. K., Smith, P. C., Parra, L. F., & Ironson, G. (2001). A general measure of work stress: The stress in general scale. Educational and Psychological Measurement, 61(5), 866-888.
Stock, G. N., & Tatikonda, M. V. (2008). The joint influence of technology uncertainty and interorganizational interaction on external technology integration success. Journal of operations management, 26(1), 65-80.
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive science, 12(2), 257-285.
Sweller, J. (2010). Cognitive load theory: Recent theoretical advances.
Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, 251-296.
Tam, C., & Oliveira, T. (2016a). Performance impact of mobile banking: using the task-technology fit (TTF) approach. International Journal of Bank Marketing, 34(4), 434-457.
Tam, C., & Oliveira, T. (2016b). Understanding the impact of m-banking on individual performance: DeLone & McLean and TTF perspective. Computers in human behavior, 61, 233-244.
Terzis, V., & Economides, A. A. (2011). The acceptance and use of computer based assessment. Computers & Education, 56(4), 1032-1044.
Van Merriënboer, J. J., Kirschner, P. A., & Kester, L. (2003). Taking the load off a learner's mind: Instructional design for complex learning. Educational psychologist, 38(1), 5-13.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
Wang, Y.-M., Wei, C.-L., & Wang, M.-W. (2022). Factors influencing students' adoption intention of brain–computer interfaces in a game-learning context. Library Hi Tech(ahead-of-print).
Yen, Y.-J. (2002). 資訊系統特性, 任務特性與電腦自我效能對工作績效的影響 National Central University].
Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation.
Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in human behavior, 26(4), 760-767.
Zigurs, I., & Buckland, B. K. (1998). A theory of task/technology fit and group support systems effectiveness. MIS quarterly, 313-334.

二、中文文獻
王宗鴻 (2006)。人格特質, 主管領導風格與人力資源管理措施對工作投入與工作績效之影響。
朱明謙 (2001)。高科技產業從業人員休閒行為, 工作壓力與工作績效之研究。
行動5.0: 創造5G數位紅利 (2019)。 https://books.google.com.tw/books?id=9DR8zQEACAAJ
行銷5.0 : 科技與人性完美融合時代的全方位戰略, 運用MarTech, 設計顧客旅程, 開啟數位消費新商機(2021)。天下雜誌出版 :
大和圖書總經銷。 https://webpac.ksml.edu.tw/bookDetail.do?id=1702435
吳適行 (2016)。企業內部入口網站 (EIP) 使用者滿意度之研究使用者滿意度之研究: 工作/科技配適度的調節效果。
沈進成、王銘傑 (2007)。工作士氣對工作績效影響關係之研究-以工作壓力為干擾變項。經營管理論叢,3(1),81-98。
高鳳霞、鄭伯壎(2014)。職場工作壓力: 回顧與展望。人力資源管理學報,14(1),77-101。
黃新福、林興濱 (2014)。組織變革認知對員工工作士氣及工作績效影響之研究: 以 K 公司為例。管理資訊計算。 3,54-76。
劉籹君、黃興進、廖則竣 (2010)。決策支援系統使用績效之實證研究: 結合任務-科技適配與資訊系統成功模式。電子商務學報,12(3), 407-430。



電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code