Responsive image
博碩士論文 etd-0528123-091648 詳細資訊
Title page for etd-0528123-091648
論文名稱
Title
XGBoost演算法在波動度風險溢酬之選擇權交易策略的應用
Application of the XGBoost Algorithm in Option Trading Strategies with Volatility Risk Premium
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2023-06-21
繳交日期
Date of Submission
2023-06-28
關鍵字
Keywords
波動度風險溢酬、機器學習、臺指選擇權、臺指選擇權波動率指數、勒式部位
Volatility Risk Premium, Machine Learning, TAIEX Options, TAIEX Options Volatility Index, Strangle Position
統計
Statistics
本論文已被瀏覽 74 次,被下載 2
The thesis/dissertation has been browsed 74 times, has been downloaded 2 times.
中文摘要
本研究依照無模型限制的方法來衡量臺指選擇權的波動度風險溢酬(Volatility Risk Premium, VRP),並結合臺指選擇權波動率指數(TAIWAN VIX)與三大法人相關指標,以 XGBoost 演算法來預測報酬點數、建構交易策略。考量到保證金帳戶之效率,選擇以趨近 Delta 中立的勒式部位作為交易對象。權衡收穫 VRP 效率與交易流動性,本交易策略於滿足策略條件下之每日一般交易時段開盤建倉、收盤平倉。在考慮保證金帳戶設定及資金持有成本下,在回測區間 2019 年 7 月到 2021 年 12 月中,達成年化報酬率 61.04% 及夏普比率(Sharpe Ratio) 3.4332 ,分別為加權指數的 2.8116 倍及 2.8130 倍。同時,賣出勒式部位時的報酬與風險表現皆較買進勒式部位時佳。最後,本研究驗證以週頻率來訓練模型在此交易策略之績效表現與以日頻率來訓練者並無顯著差異。
Abstract
This study employs a model-free approach to measure the volatility risk premium (VRP) of Taiwan index options. It combines the Taiwan index option volatility index (TAIWAN VIX) with relevant indicators from the major institutional traders. The XGBoost algorithm is used to predict return points and develop trading strategies. To consider margin account efficiency, the strategy focuses on using a strangle position that is close to Delta neutral as the trading object. Balancing the VRP harvesting efficiency and trading liquidity, the strategy opens and closes positions during the regular trading session. Taking into consideration margin account settings and capital holding costs, the backtest period from July 2019 to December 2021 shows an annualized rate of return of 61.04% and a Sharpe ratio of 3.4332. These figures are 2.8116 times the weighted index and 2.8130 times respectively. Furthermore, selling a strangle position outperforms buying a strangle position in terms of return and risk performance. Finally, the study verifies that the performance of the trading strategy trained with weekly frequency is not significantly different from that trained with daily frequency.
目次 Table of Contents
論文審定書i
摘 要ii
Abstractiii
目 錄iv
圖 次vi
表 次vii
第一章 緒論1
第一節 研究動機1
第二節 研究目的3
第三節 研究架構3
第二章 文獻回顧5
第一節 波動度風險溢酬5
第二節 台灣指數選擇權交易策略7
第三節 機器學習在金融領域的應用9
第三章 研究方法11
第一節 研究流程11
第二節 研究資料12
第三節 特徵建構14
第四節 預測目標19
第五節 模型訓練22
第六節 模型介紹23
第七節 交易策略27
第四章 實證結果29
第一節 模型預測結果29
第二節 買進及賣出績效分析41
第三節 建構模型頻率分析46
第五章 結論49
參考文獻50
參考文獻 References
Andersen, T. G., Bollerslev, T., Diebold, F. X., & Heiko, E. (2001). The distribution of realized stock return volatility. Journal of Financial Economics 61(1), 43–76.
Barndorff-Nielsen, O. E., & Neil, S. (2002). Econometric analysis of realised volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society, Series B, 64(2). 253-280.
Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of political economy, 81(3), 637–654.
Blair, B. J., Poon, S. H., & Taylor, S. J. (2001). Forecasting S&P 100 volatility: the in-cremental information content of implied volatilities and high-frequency index re-turns. Journal of Econometrics, 105(1), 5-26.
Bollen, N. P. B., & Whaley, R. E. (2004). Does net buying pressure affect the shape of implied volatility functions? Journal of Finance, 59, 711–754.
Bollerslev, T., Gibson, M., & Zhou, H. (2011). Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities. Journal of Econometrics, 160(1), 235-245.
Britten-Jones, M., & Neuberger, A., (2000). Option Prices, Implied Price Processes, and Stochastic Volatility. Journal of Finance, 55(2), 1009-1044
Borovkova, S., Permana, F. J., and Weide, H. V. (2007). A closed form approach to the valuation and hedging of basket and spread option. The Journal of Derivatives, 14(4), 8-24.
Carr, P., and Wu, L. (2009). Variance Risk Premiums. The Review of Financial Studies, 22(3), 1311–1341.
Chen, C. H. (2013). The determinant of volatility risk premium and the effect of trading volatility risk premium: Evidence from the Taiwan index option market. [Un-published doctoral dissertation]. National Chiao Tung University.
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Paper pre-sented at the Proceedings of the 22nd acmsigkdd international conference on knowledge discovery and data mining.
Christensen, B. J., Hansen, C. S. , & Prabhala N. R. (2001). The Telescoping Overlap Problem in Options Data. Available at SSRN.
Christensen, B. J., & Prabhala N. R. (1998). The Relation between Implied and Realized Volatility. Journal of Financial Economics, 50(2), 125-150.
Dempster, M. A. H., and Hong, S. S. G. (2002). Spread option valuation and the fast Fourier transform. In: Geman, H., Madan, D., Pliska, S. R., Vorst, T. Mathematical Finance —Bachelier Congress 2000. Springer. 203–220.
De Spiegeleer, J., Madan, D. B., Reyners, S., and Schoutens, W. (2018). Ma- chine learning for quantitative finance: fast derivative pricing, hedging and fitting. Quanti-tative Finance, 18(10), 1635-1643.
Duan, J. C. (1995). The GARCH option pricing model. Mathematical finance, 5(1), 13-32.
Gârleanu, N., Pedersen, L. H., & Poteshman, A. M. (2009). Demand-based option pric-ing. Review of Financial Studies, 22(10), 4259–4299.
Dempster, M., Medova, E., and Tang, K. (2008). Long term spread option valuation and hedging. Journal of Banking & Finance, 32(12), 2530-2540.
Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29(5) , 1189-1232
Guo, I. and Loeper, G. (2020). The Volatility Risk Premium: An Empirical Study on the S&P 500 Index. Available at SSRN: https://ssrn.com/abstract=3739933 or http://dx.doi.org/10.2139/ssrn.3739933
Huang, S.-C., Chiou, C.-C., Chiang, J.-T., and Wu, C.-F. (2020). A novel intelligent op-tion price forecasting and trading system by multiple kernel adaptive filters. Journal of Computational and Applied Mathematics, 369, 112560.
Hutchinson, J. M., Lo, A. W., & Poggio, T. (1994). A Nonparametric Approach to Pric-ing and Hedging Derivative Securities Via Learning Networks. The Journal of Fi-nance, 49(3).
Ivașcu, C. F. (2021). Option pricing using machine learning. Expert Systems with Appli-cations, 163, 113799.
Jiang, G., & Tian, Y. (2005). Model-free implied volatility and its information content. Review of Financial Studies, 18(4), 1305–1342.
Jiang, G., & Tian, Y. (2007). Extracting model-free volatility from option prices: An ex-amination of the VIX index. Journal of Derivatives, 14(3), 1–26.
Konstantinidi, E., & Skiadopoulos, G. S. (2015). How Does the Market Variance Risk Premium Vary Over Time? Evidence from S&P 500 Variance Swap Investment Returns. Journal of Banking & Finance, 62, 62-75
Meddahi, N. (2002). Theoretical comparison between integrated and realized volatility. Journal of Applied Econometrics 17(5), 479–508.
Merton, R. C. (1973). Theory of rational option pricing. The Bell Journal of economics and management science, 4(1), 141-183.
Nagel, S. (2012). Evaporating liquidity. Review of Financial Studies, 25(7), 2005-2039.
Park, H., Kim, N., and Lee, J. (2014). Parametric models and non-parametric machine learning models for predicting option prices: Empirical comparison study over KOSPI 200 Index options. Expert Systems with Applications, 41(11), 5227-5237.
Poitras, G. (2009). The Early History of Option Contracts. In: Hafner, W., Zimmermann, H. (eds) Vinzenz Bronzin’s Option Pricing Models. Springer, Berlin, Heidelberg.
Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and Sys-tems Magazine, 6(3), 21-45.
Pong, S., Shackleton, M. B. , Taylor, S. J., & Xu X. (2004). Forecasting Sterling/Dollar Volatility: A Comparison of Implied Volatility and AR(FI)MA Models. Journal of Banking and Finance, 28(10), 2541-2563.
Quek, C., Pasquier, M., & Kumar, N. (2008). A novel recurrent neural network- based prediction system for option trading and hedging. Applied Intelligence, 29(2), 138-151.
Sinclair, E. (2010). Option trading: Pricing and volatility strategies and techniques. John Wiley & Sons.
Wang, C. W., Wu, C. W., Tzang, S. W. (2012). Implementing option pricing models when asset returns follow an autoregressive moving average process. International Review of Economics and Finance 24 (2012) 8-25.
Yao, J., Li, Y., & Tan, C. L. (2000). Option price forecasting using neural networks. Omega, 28(4), 455-466. Wu, W. E., Syu, J. H., & Chen, C. M. (2022). Kelly-Based Options Trading Strategies on Settlement Date via Supervised Learn-ing Algorithms. Computational Economics, 59, 1627–1644.
趙啟方、王昱媜、吳牧恩(2022)。運用隨機森林演算法於選擇權量化交易策略。中國統計學報,60(2),69-94。
林昱澄(2021) 。選擇權結算前動態賣方模型實證研究:臺指選擇權高頻交易策略之應用。〔未出版之碩士論文〕。國立清華大學財務金融碩士在職專班。
許哲揮(2020)。選擇權交易策略— 台指選擇權為例。〔未出版之碩士論文〕。國立高雄科技大學財務管理系。
陳柏霖(2021) 。機器學習選擇權定價—以台指選擇權日內資料為例。〔未出版之碩士論文〕。國立中山大學財務管理學系研究所。
李彥槿(2020)。應用機器學習於選擇權定價預測-以台灣選擇權市場為例。〔未出版之碩士論文〕。國立高雄科技大學金融資訊系。
鄭晉瑜(2022)。不同交易時段台指選擇權時間價值遞減速率分析〔未出版之碩士論文〕。國立高雄科技大學金融資訊系。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code