論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
COVID-19疫情後以AIoT與快速傅立葉轉換輔助遠距醫療疼痛評估之商業模式研究-以E醫院麻醉科為例 Research on Using AIoT and FFT to Support Telemedicine Pain Assessment and Business Model Analysis after the COVID-19 Epidemic -A Case Study of an Anesthesia Department of E-Hospital |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
102 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-05-05 |
繳交日期 Date of Submission |
2023-07-04 |
關鍵字 Keywords |
疼痛監測、醫院管理、麻醉評估、商業模式、人工智慧 Pain Monitoring, Hospital Management, Anesthesia Assessment, Business Model, Artificial Intelligence |
||
統計 Statistics |
本論文已被瀏覽 151 次,被下載 3 次 The thesis/dissertation has been browsed 151 times, has been downloaded 3 times. |
中文摘要 |
目前,接受手術的病人,疼痛評估完全依賴病人主觀敘述,沒有客觀的居家儀器可用於監測術前、術中與術後的疼痛趨勢。尤其是對於有心臟病的患者,其麻醉後風險更高,更需要仔細追蹤疼痛狀況,防止因為疼痛治療的不良而誘發心臟病發。因此,本研究目標在參考術中疼痛監測機器(Analgesia Nociception Index,ANI),發展出居家疼痛指數檢測原型機器,讓準備接受手術的病人可以得到完整的術前、術中與術後的麻醉評估疼痛趨勢,從而達到降低心血管疾病的風險,並探討其相對應的商業模式應用。 在現行的評鑑規範與醫療法規定下,醫療行為必須由醫護人員親自執行。然而,在Covid-19疫情期間,許多病人需要進行接觸隔離,這使得使用傳統有線型生命徵象監測儀進行手術麻醉時,存在著傳播病毒的風險。因此,Covid-19疫情加速了遠距醫療與遠距監測儀器的發展。 遠距監測儀器是一種安全、有效的監測方式,不僅避免病人與醫護人員的直接接觸,同時也提高了監測即時性與趨勢性。本研究聚焦於引進無線物聯網技術(Internet of Things,IoT)、快速傅立葉轉換(Fast Fourier Transfer,FFT)並且透過卷積神經網路(Convolutional Neural Network,CNN),以專家標籤危險心電圖波形與區別雜訊(Noise)作為病人術前、術中與術後返家的生命徵象與疼痛趨勢監測系統,以及探討引進新的遠距醫療技術之後的商業模式。 希望透過人工智慧技術的導入,可以實現自動化監測和警報系統,讓遠程醫療弭補術後訪視人力不足的缺口。該系統的研發可降低病人接受手術麻醉後返家的麻醉合併症,特別是對於有心臟病患者而言,提供了一個安心的監測方案。 |
Abstract |
Currently, the pain assessment of surgical patients relies entirely on subjective patient reporting, and there are no objective home devices available to monitor pain trends before, during, and after surgery. This is particularly concerning for patients with heart disease, as they are at higher risk after anesthesia and require careful monitoring to prevent adverse cardiac events triggered by inadequate pain management. Therefore, the objective of this study is to develop a home pain index prototype machine based on the reference of the Analgesia Nociception Index (ANI), a machine for intraoperative pain monitoring, which can provide surgical patients with a complete assessment of anesthesia and pain trends before, during, and after surgery. This will reduce the risk of cardiovascular disease and explore the corresponding commercial application model. Under current evaluation standards and medical regulations, medical procedures must be performed by healthcare professionals in person. However, during the Covid-19 pandemic, many patients need to undergo contact isolation, which poses a risk of virus transmission when using traditional wired vital sign monitors during anesthesia for surgery. Therefore, Covid-19 has accelerated the development of remote medical care and remote monitoring devices. Remote monitoring devices are a safe and effective monitoring method that not only avoids direct contact between patients and healthcare professionals, but also improves the real-time and trend monitoring. This study focuses on introducing wireless Internet of Things (IoT) technology, Fast Fourier Transfer (FFT), and Convolutional Neural Network (CNN) to tag expert-labelled dangerous electrocardiogram waveforms and distinguish noise as a life sign and pain trend monitoring system for patients before, during, and after surgery when returning home. It also explores the business model after introducing new remote medical technology. The introduction of artificial intelligence technology is expected to achieve an automated monitoring and alarm system, filling the gap in postoperative visits where human resources are insufficient. The development of this system can reduce anesthesia-related complications for patients returning home after surgery, especially for those with heart disease, providing a reassuring monitoring solution. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 中文摘要 iii Abstract iv 目錄 vi 圖次 viii 表次 x 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與範圍 4 第三節 論文架構 6 第二章 文獻探討 8 第一節 疼痛評估 8 第二節 遠距醫療 12 第三節 商業模式 14 第四節 E醫院麻醉科之相關評鑑規範 16 第三章 研究方法與流程 38 第一節 設計科學研究法 38 第二節 研究流程 40 第四章 計與發展解決方案 43 第一節 外在分析與機會威脅評估 43 第二節 內在分析與優勢劣勢評估 45 第三節 解決方案中疼痛監測原理 48 第五章 展示與評估解決方案 55 第一節 展示解決方案 55 第二節 評估解決方案 62 第三節 解決問題的競爭者方案 75 第六章 結論 76 第一節 研究成果 76 第二節 研究貢獻 77 第三節 研究限制 79 第四節 未來研究方向 81 參考文獻 83 |
參考文獻 References |
1.Christ M. (2020). Pain - the fifth vital sign. Swiss medical weekly, 150, w20215. https://doi.org/10.4414/smw.2020.20215 2.Farhang, B., & Mathews, D. M. (2019). Pain monitor: reality or fantasy in ambulatory patients. Current opinion in anaesthesiology, 32(6), 727–734. https://doi.org/10.1097/ACO.0000000000000797 3.護理及健康照護司網頁(2024).Available at https://www.mohw.gov.tw/cp-2652-22310-1.html Accessed April 20, 2024. 4.Romero-Hall E. (2015). Pain Assessment and Management in Nursing Education Using Computer-based Simulations. Pain management nursing : official journal of the American Society of Pain Management Nurses, 16(4), 609–616. https://doi.org/10.1016/j.pmn.2014.11.001 5.Ekeland, A. G., Bowes, A., & Flottorp, S. (2010). Effectiveness of telemedicine: a systematic review of reviews. International journal of medical informatics, 79(11), 736–771. https://doi.org/10.1016/j.ijmedinf.2010.08.006. 6.Ramesh, A. N., Kambhampati, C., Monson, J. R., & Drew, P. J. (2004). Artificial intelligence in medicine. Annals of the Royal College of Surgeons of England, 86(5), 334–338. https://doi.org/10.1308/147870804290 7.Sahu, D., Pradhan, B., Khasnobish, A., Verma, S., Kim, D., & Pal, K. (2021). The Internet of Things in Geriatric Healthcare. Journal of healthcare engineering, 2021, 6611366. https://doi.org/10.1155/2021/6611366 8.吳詩茗(2023)。智慧醫療新世代: 探究線上健康社區遠距醫療服務之使用。﹝碩士論文。國立陽明交通大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/w485aw。 9. 蘇以婷(2011)。運用EPCglobal架構與智慧物聯網技術之居家照護系統。﹝碩士論文。逢甲大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/w2ev77。 10. 民視新聞網. (2022, October 4). 30多歲女性曾打3劑疫苗 居隔期間死亡. Yahoo!新聞. Available at https://tw.news.yahoo.com/30%E5%A4%9A%E6%AD%B2%E5%A5%B3%E6%80%A7%E6%9B%BE%E6%89%933%E5%8A%91%E7%96%AB%E8%8B%97-%E5%B1%85%E9%9A%94%E6%9C%9F%E9%96%93%E6%AD%BB%E4%BA%A1-061035507.html. Accessed April 20, 2024. 11. 陳新華,蔣建文,周華,謝海洋,周琳,郭丹婧,薛晨,朱威威,周建英,鄭樹森 (2020).COVID-19 疫情背景下的醫院人工智能快速佈局和發展戰略探討.中國工程科學,22(2):130-137. 12. Osterwalder, A., & Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. Hoboken, NJ: John Wiley & Sons. 13. Basbaum, A. I., Bautista, D. M., Scherrer, G., & Julius, D. (2009). Cellular and molecular mechanisms of pain. Cell, 139(2), 267–284. https://doi.org/10.1016/j.cell.2009.09.028 14. Woolf C. J. (2011). Central sensitization: implications for the diagnosis and treatment of pain. Pain, 152(3 Suppl), S2–S15. https://doi.org/10.1016/j.pain.2010.09.030 15. Kuner, R., & Flor, H. (2016). Structural plasticity and reorganisation in chronic pain. Nature reviews. Neuroscience, 18(1), 20–30. https://doi.org/10.1038/nrn.2016.162 16. Chou, R., Gordon, D. B., de Leon-Casasola, O. A., Rosenberg, J. M., Bickler, S., Brennan, T., Carter, T., Cassidy, C. L., Chittenden, E. H., Degenhardt, E., Griffith, S., Manworren, R., McCarberg, B., Montgomery, R., Murphy, J., Perkal, M. F., Suresh, S., Sluka, K., Strassels, S., Thirlby, R., … Wu, C. L. (2016). Management of Postoperative Pain: A Clinical Practice Guideline From the American Pain Society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists' Committee on Regional Anesthesia, Executive Committee, and Administrative Council. The journal of pain, 17(2), 131–157. https://doi.org/10.1016/j.jpain.2015.12.008 17. Garra, G., Singer, A. J., Taira, B. R., Chohan, J., Cardoz, H., Chisena, E., & Thode, H. C., Jr (2010). Validation of the Wong-Baker FACES Pain Rating Scale in pediatric emergency department patients. Academic emergency medicine : official journal of the Society for Academic Emergency Medicine, 17(1), 50–54. https://doi.org/10.1111/j.1553-2712.2009.00620.x 18. Kehlet, H., & Rathmell, J. P. (2010). Persistent postsurgical pain: the path forward through better design of clinical studies. Anesthesiology, 112(3), 514–515. https://doi.org/10.1097/ALN.0b013e3181cf423d 19. Gélinas, C., Arbour, C., Michaud, C., Vaillant, F., & Desjardins, S. (2011). Implementation of the critical-care pain observation tool on pain assessment/management nursing practices in an intensive care unit with nonverbal critically ill adults: a before and after study. International journal of nursing studies, 48(12), 1495–1504. https://doi.org/10.1016/j.ijnurstu.2011.03.012 20. Yeh L-R, Chen W-C, Chan H-Y, Lu N-H, Wang C-Y, Twan W-H, Du W-C, Huang Y-H, Hsu S-Y, Chen T-B.(2021)Integrating ECG Monitoring and Classification via IoT and Deep Neural Networks. Biosensors. 11(6):188. https://doi.org/10.3390/bios11060188 21. Herr, K., Coyne, P. J., McCaffery, M., Manworren, R., & Merkel, S. (2011). Pain assessment in the patient unable to self-report: position statement with clinical practice recommendations. Pain management nursing : official journal of the American Society of Pain Management Nurses, 12(4), 230–250. https://doi.org/10.1016/j.pmn.2011.10.002 22. 劉錦鳳(2020)。門診病人診前點選疼痛評估系統之分析- 以中部某醫學中心為例。﹝碩士論文。東海大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/e93q6k。 23. Herr, K., Coyne, P. J., Key, T., Manworren, R., McCaffery, M., Merkel, S., Pelosi-Kelly, J., Wild, L., & American Society for Pain Management Nursing (2006). Pain assessment in the nonverbal patient: position statement with clinical practice recommendations. Pain management nursing : official journal of the American Society of Pain Management Nurses, 7(2), 44–52. https://doi.org/10.1016/j.pmn.2006.02.003 24. Roine, R., Ohinmaa, A., & Hailey, D. (2001). Assessing telemedicine: a systematic review of the literature. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne, 165(6), 765–771. 25. Hailey, D., Roine, R., & Ohinmaa, A. (2002). Systematic review of evidence for the benefits of telemedicine. Journal of telemedicine and telecare, 8 Suppl 1, 1–30. https://doi.org/10.1258/1357633021937604 26. Whitten, P., Holtz, B., & Laplante, C. (2010). Telemedicine: What have we learned?. Applied clinical informatics, 1(2), 132–141. https://doi.org/10.4338/ACI-2009-12-R-0020 27. Dorsey, E. R., & Topol, E. J. (2016). State of Telehealth. The New England journal of medicine, 375(2), 154–161. https://doi.org/10.1056/NEJMra1601705 28. Mars, M., & Scott, R. E. (2016). WhatsApp in Clinical Practice: A Literature Review. Studies in health technology and informatics, 231, 82–90. 29. Rashid, M. A., Khandaker, M. U., & Rashid, M. A. (2016). Cloud-based telemedicine system for rural Bangladesh—A case study. Journal of Medical Systems, 40(6), 143. doi: 10.1007/s10916-016-0485-6 30. Kichloo, A., Albosta, M., Dettloff, K., Wani, F., El-Amir, Z., Singh, J., Aljadah, M., Chakinala, R. C., Kanugula, A. K., Solanki, S., & Chugh, S. (2020). Telemedicine, the current COVID-19 pandemic and the future: a narrative review and perspectives moving forward in the USA. Family medicine and community health, 8(3), e000530. https://doi.org/10.1136/fmch-2020-000530 31. Osterwalder, A., & Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. Hoboken, NJ: John Wiley & Sons. 32. Holdford, D. A., Pontinha, V. M., & Wagner, T. D. (2022). Using the Business Model Canvas to Guide Doctor of Pharmacy Students in Building Business Plans. American journal of pharmaceutical education, 86(3), 8719. https://doi.org/10.5688/ajpe8719 33. Kjeldsen, J. D., Blichfeldt, B. S., & Klastrup, L. (2016). Business model innovation in healthcare: A case study of a Danish hospital. Journal of Health Organization and Management, 30(5), 734-751. 34. Pavel, A. B., Fotea, I. S., &Ștefan, C. A. (2017). Tourism Destination Competitiveness: An Exploratory Study. Sustainability, 9(12), 2149. https://doi.org/10.3390/su9122149 35. Foss, N. J., & Saebi, T. (2017). Business models and opportunities for open innovation. In H. Chesbrough, W. Vanhaverbeke, & J. West (Eds.), New Frontiers in Open Innovation (pp. 119-144). Oxford: Oxford University Press. 36. Hanssens, M. M., & Saheb, T. (2016). Intellectual property and business models in the digital economy. Journal of Marketing, 80(6), 22-36. 37. Zott, C., Amit, R., & Massa, L. (2011). The business model: Recent developments and future research. Journal of Management, 37(4), 1019-1042. https://doi.org/10.1177/0149206311406265 38. Casadesus-Masanell, R., & Zhu, F. (2013). Business model innovation and competitive imitation: The case of sponsor-based business models. Strategic Management Journal, 34(4), 464-482. doi: 10.1002/smj.2024 39. 顏聿(2021)。探討其各職類同仁對醫院評鑑的感受-以南部某個案醫院為例。﹝碩士論文。國立高雄大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/rjdc9q。 40. 吳敏華(2008)。建立醫療組織倫理評鑑標準之初探。﹝碩士論文。臺北醫學大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/7549fj。 41. 王俊文、葉德豐、曾坤儀(2003),臺灣醫院評鑑趨勢之探討,中山醫學雜誌,第14期,513-522。 42. 衛生福利醫事司網頁(2024),Available at https://dep.mohw.gov.tw/DOMA/mp-106.html. Accessed April 20, 2024. 43. Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information Systems Research. MIS Quarterly, 28(1), 75–105. https://doi.org/10.2307/25148625 44. Peffers, Ken & Tuunanen, Tuure & Gengler, Charles & Rossi, Matti & Hui, Wendy & Virtanen, Ville & Bragge, Johanna. (2006). The design science research process: A model for producing and presenting information systems research. Proceedings of First International Conference on Design Science Research in Information Systems and Technology DESRIST. 45. International Association for the Study of Pain (2024), Available at https://www.iasp-pain.org/. Accessed April 25, 2024. 46. 陳士芳(2023)。體外震波治療對肩關節發炎病人之疼痛、肩關節活動度、焦慮和生活品質之影響。﹝碩士論文。大葉大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/4cj48q。 47. 林家惠(2015)。探討癌症病人疼痛與失志狀態之關聯-由癌症疼痛意義觀點介入。﹝碩士論文。南華大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/rz8wdd。 48. JCAHO: CAMH Revised Pain Management Standards. Available at http://www.jcaho.org/standard/pmhap.html, pp 1-13. Accessed April 25, 2024. 49. Zhang, K., Julius, D., & Cheng, Y. (2021). Structural snapshots of TRPV1 reveal mechanism of polymodal functionality. Cell, 184(20), 5138–5150.e12. https://doi.org/10.1016/j.cell.2021.08.012 50. Dubin, A. E., & Patapoutian, A. (2010). Nociceptors: the sensors of the pain pathway. The Journal of clinical investigation, 120(11), 3760–3772. https://doi.org/10.1172/JCI42843 51. Boezaart, A. P., Smith, C. R., Chembrovich, S., Zasimovich, Y., Server, A., Morgan, G., Theron, A., Booysen, K., & Reina, M. A. (2021). Visceral versus somatic pain: an educational review of anatomy and clinical implications. Regional anesthesia and pain medicine, 46(7), 629–636. https://doi.org/10.1136/rapm-2020-102084 52. Baron, R., Binder, A., & Wasner, G. (2010). Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. The Lancet. Neurology, 9(8), 807–819. https://doi.org/10.1016/S1474-4422(10)70143-5 53. Burguera, M., Gandía, R., Chorro, F. J., García-Civera, R., Ruiz, R., & López-Merino, V. (1995). Continuous heart rate variability monitoring through complex demodulation implemented with the fast Fourier transform and its inverse. Pacing and clinical electrophysiology : PACE, 18(7), 1401–1410. https://doi.org/10.1111/j.1540-8159.1995.tb02602.x 54. Yeh, L. R., Hsu, S. Y., Chang, H. Y., Lee, T. L., Lam, C. F., & Chen, T. B. (2019). A Real-Time Remote ECG Monitor with IoT: Application in Cellphone with Arduino Device. E-Da Medical Journal, 6(4), 8-15. https://doi.org/10.6966/EDMJ.201912_6(4).0002 55. Blood, J. D., Wu, J., Chaplin, T. M., Hommer, R., Vazquez, L., Rutherford, H. J., Mayes, L. C., & Crowley, M. J. (2015). The variable heart: High frequency and very low frequency correlates of depressive symptoms in children and adolescents. Journal of affective disorders, 186, 119–126. https://doi.org/10.1016/j.jad.2015.06.057 56. Ledowski, T., Tiong, W. S., Lee, C., Wong, B., Fiori, T., & Parker, N. (2013). Analgesia nociception index: evaluation as a new parameter for acute postoperative pain. British journal of anaesthesia, 111(4), 627–629. https://doi.org/10.1093/bja/aet111 57. 資料來源:Figure by Poul-Erik Paulev, M.D., D.Sci . Available at https://www.pharmacology2000.com/Autonomics/Introduction/Introobj1.htm Accessed March 5, 2024 58. Alonso Puig, M., Alonso-Prieto, M., Miró, J., Torres-Luna, R., Plaza López de Sabando, D., & Reinoso-Barbero, F. (2020). The Association Between Pain Relief Using Video Games and an Increase in Vagal Tone in Children With Cancer: Analytic Observational Study With a Quasi-Experimental Pre/Posttest Methodology. Journal of medical Internet research, 22(3), e16013. https://doi.org/10.2196/16013 59. 澎湖縣政府主計處,澎湖縣統計通報,民國110年9月澎湖縣 109 年家庭收支概況 60. Bonati, L. H., Jansen, O., de Borst, G. J., & Brown, M. M. (2022). Management of atherosclerotic extracranial carotid artery stenosis. The Lancet. Neurology, 21(3), 273–283. https://doi.org/10.1016/S1474-4422(21)00359-8 61. 林文晟、陳泓銘(2021)。智慧穿戴裝置結合健康保險之研究-科技接受模式與創新抵制理論之應用。品質學報,28(6),437-456。https://doi.org/10.6220/joq.202112_28(6).0003 62. Wearable Devices: A Review" (2018) by Kavi Kishor Kota, S. M. K. Quadri, and M. Faizan. This review article provides an overview of wearable devices, including smartwatches, fitness trackers, and smart clothing. It discusses the various sensors and technologies used in wearable devices, as well as their applications in healthcare, sports, and other areas |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |