Responsive image
博碩士論文 etd-0624123-164351 詳細資訊
Title page for etd-0624123-164351
論文名稱
Title
以雙鎗經熱風管噴吹焦爐氣與粉煤進入高爐之模擬分析
Numerical Analsysis of coke oven gas and pulverized coal injected through the tuyere into blast furnace by using dual lances
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2023-06-30
繳交日期
Date of Submission
2023-07-24
關鍵字
Keywords
高爐、風徑區、焦爐氣、氫氣、粉煤
Blast Furnace, Raceway, Coke Oven Gas, Hydrogen, Coal
統計
Statistics
本論文已被瀏覽 87 次,被下載 5
The thesis/dissertation has been browsed 87 times, has been downloaded 5 times.
中文摘要
氫氣是一種無碳清潔能源,也是減少煉鐵高爐(BFs)二氧化碳排放的潛在可利用燃料,其中焦爐氣(COG)富氫氣體與粉煤共同注入至高爐下部是目前被認為最可行的技術之一 。本研究採用三維穩態模型模擬高爐底部鼓風嘴(tuyere)、風徑區(raceway)與燃料雙鎗注入粉煤(PC)與焦爐氣(COG)的燃燒情形。研究結果顯示,焦爐氣注入火焰的點燃位置相較於雙鎗粉煤噴吹,會大幅提前至鎗口尖端附近,造成鼓風管內壓力變大,增加鼓風管的熱負荷,並影響粉煤的點火位置及風徑區的燃燒特性。透過增加焦爐氣噴鎗保護氣體流量可使鼓風區火焰溫度降低,但會使風徑區溫度下降,造成粉煤燃燒效率不佳。在富氧鼓風環境下,粉煤的平均燃燼率有所提升,可改善噴吹焦爐氣造成風徑區溫度降低的問題。本研究以數值方式探討不同型態焦爐氣共吹之燃燒情形,焦爐氣共吹會使火焰往前延伸至鎗口尖端,亦會導致燃盡率下降及風徑區氣體溫度過高,使用熱風富氧可提升平均燃盡率,透過增加焦爐氣噴鎗保護氣體流量,可使風徑區溫度有所降低。另外,焦爐氣噴鎗管徑擴大可使鎗口流速降低,鼓風區平均溫度有所降低,以及風徑區高溫提升;使用天然氣(NG)噴吹會導致風徑區溫度下降,燃盡率降低。
Abstract
Hydrogen is a carbon-free clean energy and a potential fuel to reduce CO2 emissions in ironmaking blast furnaces (BFs), among which the co-injection of hydrogen/coal is one of the most promising and feasible technologies. In this study, a three-dimensional (3D) steady-state CFD model is used for describing duel-lances fuel injection via tuyere into the raceway of Blast Furnace. The simulation results indicate that the ignition position of the COG hydrogen-rich gas flame will be greatly advanced to near the tip of lance, resulting in an increase in the pressure in the blast tube, increasing the heat load of the blast tube, and affecting the ignition position of the pulverized coal and the raceway. Increasing the cooling gas flow rate of the COG lance can lower temperature on the tip of lances to raceway , but the temperature in the raceway will drop, resulting in lower burnout rate efficiency of pulverized coal. In the oxygen-enriched blast environment, the average burnout rate of pulverized coal is improved, which can improve the problem of the temperature drop in the raceway caused by COG injection. This research numerically analyzes the combustion situation of different types of COG co-injection. COG co-injection will make the flame extend forward to the tip of lance, which will also lead to a decrease in the burnout rate and an excessively high gas temperature in the tuyere. Hot air enriched with oxygen is used. The average burnout rate can be improved, and the temperature in the tuyere can be reduced by increasing cooling gas flow rate of the COG lance. Furthermore, expanding the diameter of COG lance can reduce the velocity of lance tip, reduce the average temperature in the tuyere and increase the high temperature in the raceway; the result of NG injection will reduce the temperature in the raceway and reduce the burnout .
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 x
符號說明 xi
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 風徑區與噴槍 3
1.2.2 注入PCI燃料 5
1.2.3 替代燃料和氣體燃料噴吹 8
1.3 研究目的 11
第2章 研究方法與數學模型 12
2.1 三維模型 13
2.2 氣相方程式(Gas Phase) 15
2.2.1 氣相質量方程式 15
2.2.2 氣相動量方程式 15
2.2.3 氣相能量方程式 15
2.3 單一粒子離散相方程式(Discrete Phase Model, DPM) 16
2.3.1 離散相質量方程式 16
2.3.2 離散相動量方程式 16
2.3.3 離散相能量方程式 16
2.4 紊流模型 17
2.5 粉煤燃燒反應模型方程式 18
2.5.1 粉煤熱裂解揮發反應 18
2.5.2 粉煤固定碳Char燃燒 19
2.6 非預混、Composition PDF、Finite-rate/Eddy-dissipation及Eddy-dissipation concept模型 20
2.6.1 非預混模型 20
2.6.2 Composition PDF transport 21
2.6.3 Finite-rate/Eddy-dissipation 21
2.6.4 Eddy-dissipation concept 22
2.7 P-1輻射模型 23
2.8 粉煤燃盡率 24
第3章 模擬結果與討論 25
3.1 單鎗共吹模擬比較 26
3.2 使用GRI-Mech 3.0多步驟反應與簡化燃燒模型比較 31
3.3 雙鎗粉煤及焦爐氣共吹 33
3.3.1 雙鎗粉煤噴吹參考案例比對 33
3.3.2 雙鎗粉煤及焦爐氣共吹 36
3.3.3 焦爐氣流量 41
3.3.4 焦爐氣保護氣體(N2)流速 47
3.4 富氧燃燒 52
3.4.1 熱風富氧 52
3.4.2 氧煤鎗富氧 54
3.5 管徑擴大及NG噴吹 58
3.5.1 焦爐氣管徑擴大 58
3.5.2 NG噴吹 61
第4章 結論及未來展望 63
參考文獻 65
參考文獻 References
1. Wang, S. and Y. Shen, CFD-DEM modelling of raceway dynamics and coke combustion in an ironmaking blast furnace. Fuel, 2021. 302.
2. Mathieson, J.G., J.S. Truelove, and H. Rogers, Toward an understanding of coal combustion in blast furnace tuyere injection. Fuel, 2005. 84(10): p. 1229-1237.
3. Gerres, T., Green steel production_How G7 countries can help change the global landscape.
4. Cui, J., Q. Hou, and Y. Shen, CFD-DEM study of coke combustion in the raceway cavity of an ironmaking blast furnace. Powder Technology, 2020. 362: p. 539-549.
5. Peng, X., et al., Evolution and Physical Characteristics of a Raceway Based on a Transient Eulerian Multiphase Flow Model. Processes, 2020. 8(10).
6. AOKI, H., et al., Simulation of Transport Phenomena around the Raceway Zone in the Blast Furnace with and without Pulverized Coal Injection. 1993. 33: p. 646-654.
7. Maki, A., et al., High Rate Coal Injection of 218kg/t at Fukuyama No. 4 Blast Fukuyama. ISIJ International, 1996. 36(6): p. 650-657.
8. T. Ariyama, M.S., Y.-I., Combustion Behavior of Pulverized Coal in Tuyere Zone of Blast Furnace and Influence of Injection Lance Arrangement on Combustibility. ISIJ International, 1994. 34(6): p. 476-483.
9. Du, S.-W., W.-H. Chen, and J. Lucas, Performances of pulverized coal injection in blowpipe and tuyere at various operational conditions. Energy Conversion and Management, 2007. 48(7): p. 2069-2076.
10. Cameron, I., et al., Blast Furnace Fuel Injection, in Blast Furnace Ironmaking. 2020. p. 573-600.
11. Ishii, K., Advanced pulverized coal injection technology and BF operation,1st ed. Elsevier Science, Pergamon, Oxford, UK, 2000: p. 63–82.
12. Paul Zulli, B., Rogers, H. , Mathieson, J. , Yu, A., Three-Dimensional Simulation of Flow and Combustion for Pulverized. ISIJ Internation, 2005. 45,No.9: p. 1272-1284.
13. Wu, D., et al., Numerical investigation of the effects of size segregation on pulverized coal combustion in a blast furnace. Powder Technology, 2019. 342: p. 41-53.
14. Cuiliu Zhang, et al., Blast furnace hydrogen-rich metallurgy-research on efficiency injection of natural gas and pulverized coal. Fuel, 2022. 311.
15. Okosun, T., Numerical Simulation of Combustion in the Ironmaking Blast Furnac. 5-2018.
16. Kaiping, D., G. Xiangzhou, and S. Haibo, Numerical Analysis on Effect of Additional Gas Injection on Characteristics around Raceway in Melter Gasifier. High Temperature Materials and Processes, 2019. 38(2019): p. 837-848.
17. Yuting Zhuo, Zhongjie Hu, and Yansong Shen, CFD study of hydrogen injection through tuyeres into ironmaking blast furnaces. Fuel, 2021. 302.
18. Zhuo, Y. and Y. Shen, Three-dimensional transient modelling of coal and coke co-combustion in the dynamic raceway of ironmaking blast furnaces. Applied Energy, 2020. 261.
19. Yiran Liu, Zhongjie Hu, and Yansong Shen, CFD Study of Hydrogen Injection in Blast Furnaces: Tuyere Co-injection of Hydrogen and Coal. Metallurgical and Materials Transactions B, 2021. 52(5): p. 2971-2991.
20. Zaitri, M., et al., Effect of CH4 ‐H2 mixture on the combustion characteristics in a stabilized swirl burner. International Journal of Energy Research, 2021. 46(3): p. 2923-2933.
21. Zouhaier Riahi, et al., Numerical investigation of turbulent combustion with hybrid enrichment by hydrogen and oxygen. International Journal of Hydrogen Energy, 2020. 45(4): p. 3316-3326.
22. Hongqiang Liao, Baoqing Li, and Bijiang Zhang, Pyrolysis of coal with hydrogen-rich gases. 2. Desulfurization and denitrogenation in coal pyrolysis under coke-oven gas and synthesis gas. Fuel, 1998. 77: p. 1643–1646.
23. Bermúdez JM, A.A., Luque R, Menéndez JA., An overview of novel technologies to valorise coke oven gas surplus. 2013. 110,150-159.
24. Babich, A., et al., Intensifying the PC conversion in the raceway by means of coke oven gas. Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information, 2020. 76(1): p. 19-29.
25. Yan Chen, Dong Fu, and Chenn Q. Zhou, Numerical simulation of the co-injection of natural gas and pulverized coal in blast furnace. June 2013.
26. Okosun Tyamo, Numerical Simulation of Combustion in the Ironmaking Blast Furnac. 2018.
27. Zhou, Z., et al., Effect of Oxygen-Coal Lance Configurations on Coal Combustion Behavior. steel research international, 2017. 88(1).
28. Zhenfeng Zhou, et al., Combustion Enhancement of Pulverized Coal with Targeted Oxygen-Enrichment in an Ironmaking Blast Furnace. Processes, 2021. 9(3).
29. 楊源鎰, 高爐風徑區中氧煤噴吹與單鎗操作粉煤燃燒行為之比較. 國立屏東科技大學車輛工程系 碩士學位論文, 西元2018.
30. ANSYS, I., ANSYS Fluent User's Guide. 2013.
31. Genong Li and Michael F. Modest Application of composition PDF methods in the investigation of turbulence–radiation interactions. Journal of Quantitative Spectroscopy & Radiative Transfer 2002. 73: p. 461-472.
32. B.F. Magnussen and B.H. Hjertager, On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc Combust Inst, 1976: p. 719-729.
33. Westbrook, C.K. and F.L. Dryer, Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames. Combustion Science and Technology, 2007. 27(1-2): p. 31-43.
34. Bustamante, F., et al., Uncatalyzed and wall-catalyzed forward water-gas shift reaction kinetics. AIChE Journal, 2005. 51(5): p. 1440-1454.
35. Yan, L., G. Yue, and B. He, Application of an efficient exponential wide band model for the natural gas combustion simulation in a 300 kW BERL burner furnace. Applied Thermal Engineering, 2016. 94: p. 209-220.
36. Liu, J., et al., Numerical study of the chemical, thermal and diffusion effects of H 2 and CO addition on the laminar flame speeds of methane–air mixture. International Journal of Hydrogen Energy, 2015. 40(26): p. 8475-8483.
37. Khan, A.R., M.R. Ravi, and A. Ray, Experimental and chemical kinetic studies of the effect of H2 enrichment on the laminar burning velocity and flame stability of various multicomponent natural gas blends. International Journal of Hydrogen Energy, 2019. 44(2): p. 1192-1212.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code