論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
基於全距價差模型之負值改進-以CARR法為例 Correcting for Negative Values in Range-based Spread Estimator – A Conditional Auto-Regressive Range (CARR) Approach |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
44 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-07-24 |
繳交日期 Date of Submission |
2023-07-29 |
關鍵字 Keywords |
全距價差估計法、CS估計法、BHL估計法、CARR模型、高頻交易 High-low spread estimator, CS spread estimator, BHL spread estimator, CARR model, High-frequency trading |
||
統計 Statistics |
本論文已被瀏覽 206 次,被下載 11 次 The thesis/dissertation has been browsed 206 times, has been downloaded 11 times. |
中文摘要 |
如何從交易價格資料推估價差為財務文獻之一重要研究主題。本文探討基於全距之價差估計模型,使用兩種方式計算價差,分別為Cowin and Schultz (2012)估計法 (CS) 與Li, Lambe, and Adegbite (2018) 的Basic High and Low (BHL) 估計法,使用四種不同市場(KOSPI200、NIKKEI225、FTSE100、ESTX50) 30分鐘的日內資料並與日資料結果進行對照。我們發現無論是日資料或30分鐘資料, 兩種價差計算方式皆容易產生價差為負的情形,而負價差之比例介於 30-50%。為改進此問題,我們使用了Chou (2005) 的條件自我回歸全距模型 (Conditional Autoregressive Range, CARR),將原本價差使用CARR模型求得條件期待值後代入計算公式,我們發現此修正做法能有效減少負價差出現頻率。我們也進一步在CARR模型中考慮波動度之槓桿效果,亦即加入前期報酬為負之指標函數,以提升對價差計算結果的表現。 |
Abstract |
In this paper, four different markets (KOSPI200, NIKKEI225, FTSE100, ESTX50) were used with high-frequency data of 30-minute intervals to estimate the price spread and compared the result with daily data. Two methods were used to calculate the price spread: Corwin and Schultz's estimation method (CS) and Li, Lambe, and Adegbite (2018)’s Basic High and Low (BHL) estimation method. In addition to the original data's price spread, the Weibull CARR model published by Chou (2005) was also used to obtain an optimized range of the price spread, improving the spread estimation compared to the unprocessed version. We further considered yesterday's return, so we added an indicator function into the WCARR model and try to improve its performance. |
目次 Table of Contents |
論文審定書.....................................................................................................................i 摘要................................................................................................................................ii Abstract........................................................................................................................ iii 目錄...............................................................................................................................iv 圖次................................................................................................................................v 表次...............................................................................................................................vi 第一章、緒論................................................................................................................1 第二章、文獻回顧........................................................................................................3 第一節 基於全距之價差模型...............................................................................3 第二節 全距波動模型...........................................................................................4 第三節 波動度槓桿效果.......................................................................................5 第三章、資料來源........................................................................................................6 第一節資料前處理................................................................................................6 第二節 調整日內波動型態 (Intraday Volatility Pattern) .....................................7 第四章、研究方法........................................................................................................8 第一節 CS 模型....................................................................................................8 第二節 BHL 模型.................................................................................................9 第三節 自我回歸模型.........................................................................................10 第五章、實證結果......................................................................................................13 第一節 歷史資料計算結果.................................................................................13 第二節 使用 CARR 計算條件期待值後估計價差............................................13 第三節 考慮事後資料問題.................................................................................14 第四節 負價差分布情形.....................................................................................14 第五節 平均價差的日內分布.............................................................................15 第六章、結論..............................................................................................................16 References....................................................................................................................17 圖次 圖 3- 1 各市場 IVP 柱狀圖.........................................................................................24 圖 5- 1 韓國市場負價差數量加總圖………………………………………………..30 圖 5- 2 歐洲市場負價差數量加總圖 .........................................................................31 圖 5- 3 英國市場負價差數量加總圖 .........................................................................32 圖 5- 4 日本市場負價差數量加總圖 .........................................................................33 圖 5- 5 韓國市場平均價差圖 .....................................................................................34 圖 5- 6 歐洲市場平均價差圖 .....................................................................................35 圖 5- 7 英國市場平均價差圖 .....................................................................................36 圖 5- 8 日本市場平均價差圖 .....................................................................................37 表次 表 3- 1 各市場 30 分鐘資料敘述統計 .......................................................................20 表 3- 2 各市場日資料敘述統計 .................................................................................22 表 5- 1 各市場以原始全距估計之敘述統計………………………………………..25 表 5- 2 各市場以 WCARR 估計之敘述統計.............................................................26 表 5- 3 各市場以 WCARR+I 估計之敘述統計 .........................................................27 表 5- 4 各市場考慮事後資料問題後以日資料估計之敘述統計 .............................28 表 5- 5 各市場考慮事後資料問題後以 30 分鐘資料估計之敘述統計....................29 |
參考文獻 References |
Abdi, F., & Ranaldo, A. (2017). A Simple Estimation of Bid-Ask Spreads from Daily Close, High, and Low Prices. The Review of Financial Studies, 30(12), 4437–4480. Amihud, Y., & Mendelson, H. (1986). Asset pricing and the bid-ask spread. Journal of Financial Economics, 17(2), 223–249. Andersen, T. G., Bollerslev, T., Diebold, F. X., & Labys, P. (2001). The Distribution of Realized Exchange Rate Volatility. Journal of the American Statistical Association, 96(453), 42–55. Bleaney, M., & Li, Z. (2015). The performance of bid-ask spread estimators under less than ideal conditions. Studies in Economics and Finance, 32(1), 98–127. Bollerslev, T., Litvinova, J., & Tauchen, G. (2006). Leverage and Volatility Feedback Effects in High-Frequency Data. Journal of Financial Econometrics, 4(3), 353–384. Brandt, M. W., & Jones, C. S. (2006). Volatility Forecasting With Range-Based EGARCH Models. Journal of Business & Economic Statistics, 24(4), 470–486. Catania, L. (2020). The leverage effect and propagation. Available at SSRN 3578656. Chen, X., Linton, O., Schneeberger, S., & Yi, Y. (2019). Semiparametric estimation of the bid–ask spread in extended roll models. Journal of Econometrics, 208(1), 160–178. Chen, X., Linton, O., & Yi, Y. (2017). Semiparametric identification of the bid–ask spread in extended Roll models. Journal of Econometrics, 200(2), 312–325. Chou, R. Y.-T. (2005). Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model. Journal of Money, Credit, and Banking, 37(3), 561–582. Corwin, S. A. (2014). Dealing with Negative Values in the High-Low Spread Estimator. Retrieved from University of Notre Dame, Mendoza College of Business Web site: http://sites.nd.edu/scorwin/research/ Corwin, S. A., & Schultz, P. (2012). A Simple Way to Estimate Bid-Ask Spreads from Daily High and Low Prices. The Journal of Finance, 67(2), 719–760. Garman, M. B., & Klass, M. J. (1980). On the Estimation of Security Price Volatilities from Historical Data. The Journal of Business, 53(1), 67–78. Gilder, D., Shackleton, M. B., & Taylor, S. J. (2014). Cojumps in stock prices: Empirical evidence. Journal of Banking & Finance, 40, 443–459. Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. The Journal of Finance, 48(5), 1779–1801. Harris, L. (1990). Statistical Properties of the Roll Serial Covariance Bid/Ask Spread Estimator. The Journal of Finance, 45(2), 579–590. Hasbrouck, J. (2004). Liquidity in the Futures Pits: Inferring Market Dynamics from Incomplete Data. The Journal of Financial and Quantitative Analysis, 39(2), 305–326. Jahan-Parvar, M. R., & Zikes, F. (2023). When Do Low-Frequency Measures Really Measure Effective Spreads? Evidence From Equity and Foreign Exchange Markets. The Review of Financial Studies, hhad028. Le, H., & Gregoriou, A. (2020). How do you capture liquidity? A review of the literature on low‐frequency stock liquidity. Journal of Economic Surveys, 34(5), 1170-1186. Lesmond, D. A., Ogden, J. P., & Trzcinka, C. A. (1999). A New Estimate of Transaction Costs. The Review of Financial Studies, 12(5), 1113–1141. Li, Z., Lambe, B., & Adegbite, E. (2018). New bid-ask spread estimators from daily high and low prices. International Review of Financial Analysis, 60, 69–86. Lin, C.-C. (2014). Estimation accuracy of high–low spread estimator. Finance Research Letters, 11(1), 54–62. Lin, J.-C., & Rozeff, M. S. (1994). Variance, return, and high-low price spreads. Journal of Financial Research, 17(3), 301–319. Lin, Z. Y. (2022). A Comparison Study on Range-based Spread Estimators: Evidence from High-frequency KOSPI Data.[Unpublished master’s thesis].University of National Sun Yat-sen University. Mandelbrot, B. B. (1971). When Can Price be Arbitraged Efficiently? A Limit to the Validity of the Random Walk and Martingale Models. The Review of Economics and Statistics, 53(3), 225–236. Nelson, D. B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica: Journal of the Econometric Society, 347-370. Parkinson, M. (1980). The Extreme Value Method for Estimating the Variance of the Rate of Return. The Journal of Business, 53(1), 61–65. Ripamonti, A. (2016). Corwin-Schultz Bid-ask Spread Estimator in the Brazilian Stock Market. BAR - Brazilian Administration Review, 13(1), 76–97. Rogers, L. C. G., & Satchell, S. E. (1991). Estimating Variance From High, Low and Closing Prices. The Annals of Applied Probability, 1(4), 504–512. Roll, R. (1984). A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market. The Journal of Finance, 39(4), 1127–1139. Taylor, S. J., & Xu, X. (1997). The incremental volatility information in one million foreign exchange quotations. Journal of Empirical Finance, 4(4), 317–340. TSAI, P. C., & CHEN, H. J. (2020). Leverage effect in volatility and price jump: new empirical evidence. Yu, J. (2005). On leverage in a stochastic volatility model. Journal of Econometrics, 127(2), 165–178. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |