Responsive image
博碩士論文 etd-0631123-145854 詳細資訊
Title page for etd-0631123-145854
論文名稱
Title
Undercut與Bulge在固化表面之尺度分析
Scaling of undercut and bulge on solidified surface
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2023-07-27
繳交日期
Date of Submission
2023-07-31
關鍵字
Keywords
銲接、表面張力、馬蘭戈尼效應、尺度分析、數值分析、表面活性元素
Welding, Surface tension, Marangoni effect, Scale analysis, Numerical simulation, Surface active element
統計
Statistics
本論文已被瀏覽 80 次,被下載 0
The thesis/dissertation has been browsed 80 times, has been downloaded 0 times.
中文摘要
Undercut是在銲接熔合區邊緣的附近表面上並與進料方向平行的凹陷區域。Undercut會在各種銲接、積層製造、拋光技術等情況廣泛遇到,造成降低靜態、疲勞與斷裂強度並增加在凝固區域應力集中。在本研究中,尺度分析的區域包括在橫截面上自由液面的undercut與bulge。使用尺度分析定律並考慮到楊-拉普拉斯與柏努力方程式,可以成功地將undercut的深度與寬度以及bulge的高度與寬度scale為無因次的能量半徑、馬蘭戈尼數、佩克萊數、普朗特數、損失係數、表面活性溶質濃度、熔點與環境的溫度差與熔點與臨界的溫度差的比值、表面張力係數在undercut與bulge的比值以及金屬固態-液態熱傳導係數的比值。本研究使用COMSOL Multiphsysics 5.6計算二維暫態之流場與熱傳行為造成的金屬表面形貌變化。尺度分析與數值計算或實驗數據的結果吻合。並且也會討論雷射銲接的工作參數對金屬表面形貌的影響。
Abstract
Undercut, which is the depression region near the fusion zone edge parallel to scanning direction on a solidified surface. Undercuts widely encountered in various welding, additive manufacturing, polishing technologies etc. decrease static, fatigue and fracture strength and increases stress concentration of solidified region. In this work, the domain for scaling includes the undercut and bulge of free surface on transverse cross-section. Utilizing previous scaling law accounting for Young-Laplace and Bernoulli equations for rippling and humping, the depth and width of undercut and height and width of bulge can be successfully scaled to be functions of dimensionless beam power, Marangoni, Peclet and Prandtl numbers, loss coefficient, surface active solute concentration, ratios of surface tension coefficients between undercut and bulge region, ratio between differences in melting and ambient temperatures and critical and melting temperatures, solid-to-liquid thermal conductivity ratio, etc. This work also utilized COMSOL Multiphsysics 5.6 to compute surface deformation affected by unsteady two-dimensional fluid flow and heat transfer. The scaled results are compared well with numerical computation or available experimental data. The effects of laser welding process parameters on surface deformation of undercut and bulge was studied as well.
目次 Table of Contents
論文審定書i
摘要ii
Abstractiii
目錄iv
圖次vi
表次vii
符號說明viii
第一章緒論1
1.1研究背景與目的1
1.2文獻回顧2
1.3論文架構4
第二章理論背景6
2.1表面張力(Surface tension)6
2.2馬蘭戈尼效應(Marangoni effect)7
2.3尺度分析(Scale analysis)7
2.3.1無因次量(Dimensionless quantity)8
2.3.2柏努力方程式(Bernoulli's equation)10
2.3.3楊-拉普拉斯方程式(Young–Laplace equation)10
2.3.4尺度分析之推導12
第三章數值方法15
3.1基本假設16
3.2統御方程式17
3.2.1連續方程式17
3.2.2動量方程式18
3.2.3能量方程式19
3.2.4相位場方程式19
3.3邊界條件與初始條件22
3.4網格設定24
3.5材料性質25
3.6參數變換26
第四章結果與討論28
4.1Undercut的成形28
4.2數值與實驗結果之驗證31
4.3不同材料參數的影響38
4.3.1表面活性濃度對表面形貌的影響40
4.3.2液態金屬的熱傳導係數對表面形貌的影響41
4.3.3液態金屬的黏滯係數對表面形貌的影響42
4.4不同工作參數的影響43
4.4.1熱源瓦數對表面形貌的影響43
4.4.2熱源半徑對表面形貌的影響44
4.4.3熱源關閉時間對表面形貌的影響45
第五章結論與未來展望47
參考文獻49
參考文獻 References
[1] Cerit, M., Kokumer, O., & Genel, K. (2010). Stress concentration effects of undercut defect and reinforcement metal in Butt Welded Joint. Engineering Failure Analysis, 17(2), 571–578.
[2] Kurtulmuş, M., & Doğan, E. (2021). The effects of undercut geometry on the static stress concentration factor of Welds. Emerging Materials Research, 10(3), 272–277.
[3] Mills, K. C., Keene, B. J., Brooks, R. F., & Shirali, A. (1998). Marangoni effects in welding. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 356(1739), 911–925.
[4] Mills, K. C., & Keene, B. J. (1990). Factors affecting variable weld penetration. International Materials Reviews, 35(1), 185–216.
[5] Zhao, C. X., Kwakernaak, C., Pan, Y., Richardson, I. M., Saldi, Z., Kenjeres, S., & Kleijn, C. R. (2010). The effect of oxygen on transitional Marangoni flow in laser spot welding. Acta Materialia, 58(19), 6345–6357.
[6] Kou, S., Limmaneevichitr, C., & Wei, P. S. (2011). Oscillatory Marangoni flow: a fundamental study by conduction-mode laser spot welding. Welding Journal, 90(12), 229-240.
[7] Meng, X., Qin, G., Bai, X., & Zou, Z. (2016). Numerical Analysis of undercut defect mechanism in high speed gas tungsten arc welding. Journal of Materials Processing Technology, 236, 225–234.
[8] Ishizaki, K., Yokoya, S., & Okada, T. (1988). Weldability of Stainless Steel. In Report, Nippon Institute of Technology, Saitama, Japan to VAMAS Meeting on Technical Working Area, Weld Characteristics, NPL, Teddington.
[9] Mendez, P. F., & Eagar, T. W. (2003). Penetration and defect formation in high-current arc welding. Welding journal, 82(10), 296.
[10] Duggirala, A., Kalvettukaran, P., Acherjee, B., & Mitra, S. (2021). Numerical simulation of the temperature field, weld profile, and Weld Pool Dynamics in laser welding of aluminium alloy. Optik, 247, 167990.
[11] Bahrami, A., Valentine, D. T., Helenbrook, B. T., & Aidun, D. K. (2015). Study of mass transport in autogenous GTA welding of Dissimilar Metals. International Journal of Heat and Mass Transfer, 85, 41–53.
[12] Xu, J., Zou, P., Kang, D., & Wang, W. (2021). Theoretical and Experimental Study of bulge formation in laser polishing of 304 stainless steel. Journal of Manufacturing Processes, 66, 39–52.
[13] Chen, J. (2020). Modelling of Laser Welding of Aluminium using COMSOL Multiphysics (Dissertation). Retrieved from
[14] Bejan, A. (2013). Convection heat transfer. John wiley & sons.
[15] Wei, P. S., Chang, C. Y., & Chen, C. T. (1996). Surface ripple in electron-beam welding solidification. Journal of Heat Transfer, 118(4), 960–969.
[16] Wei, P. S., Wu, C. K., Huang, S. K., Hung, C. F., & Hsieh, C. A. (2020). Scaling of amplitude and pitch of surface ripples after welding solidification. Science and Technology of Welding and Joining, 26(1), 20–27.
[17] Wei, P. S., Lu, S. X., Hung, C. F., & Huang, S. K. (2022). Self-consistent scaling of amplitude and pitch of ripples on a solidified surface. Journal of Manufacturing Processes, 79, 501–509.
[18] Zong, R., Chen, J., Wu, C. S., & Chen, M. A. (2016). Undercutting formation mechanism in gas metal arc welding. Welding Journal, 95(5), 174-184.
[19] Sahoo, P., Debroy, T., & McNallan, M. J. (1988). Surface tension of binary metal—surface active solute systems under conditions relevant to welding metallurgy. Metallurgical Transactions B, 19(3), 483–491. https://doi.org/10.1007/bf02657748
[20] Liu, Z. (2022). Purifying Radionuclides with Microfluidic Technology for Medical Purpose: Simulating multiphase flows inside a microfluidic channel with the phase field method.
[21] Chen, L. Q. (2002). Phase-field models for microstructure evolution. Annual Review of Materials Research, 32(1), 113–140.
[22] Cahn, J. W., & Hilliard, J. E. (1958). Free energy of a nonuniform system. I. Interfacial Free Energy. The Journal of Chemical Physics, 28(2), 258–267.
[23] Jacqmin, D. (1996). An energy approach to the Continuum Surface Tension Method. 34th Aerospace Sciences Meeting and Exhibit.
[24] Iersel, M. V. (2019). Analysis of flow patterns and interface behavior in simulations of immiscible liquid-liquid two-phase-flow in microchannels using the conservative level set method [Master Thesis]. Delft University of Technology Faculty of Applied Science.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-07-31
校外 Off-campus:開放下載的時間 available 2026-07-31

您的 IP(校外) 位址是 216.73.216.89
現在時間是 2025-06-17
論文校外開放下載的時間是 2026-07-31

Your IP address is 216.73.216.89
The current date is 2025-06-17
This thesis will be available to you on 2026-07-31.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2026-07-31

QR Code