論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2028-07-31
校外 Off-campus:開放下載的時間 available 2028-07-31
論文名稱 Title |
磺酸化高分子混摻聚乙二醇填充於膨體四氟乙烯複合膜應用於氫燃料電池之研究 The study of sulfonated polymer blended with polyethylene glycol filled in expanded poly(tetrafluoroethylene) composite membrane for hydrogen fuel cells |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
84 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-07-26 |
繳交日期 Date of Submission |
2023-07-31 |
關鍵字 Keywords |
質子交換膜、聚乙二醇、聚芳香醚、ePTFE支撐材、磺酸化高分子 proton exchange membrane, polyethylene glycol, poly(arylene ether)s, support material ePTFE, sulfonated polymers |
||
統計 Statistics |
本論文已被瀏覽 56 次,被下載 0 次 The thesis/dissertation has been browsed 56 times, has been downloaded 0 times. |
中文摘要 |
本研究由實驗室先前開發之磺酸化聚芳香醚高分子(SP4)浸塗於市售親水性支撐材ePTFE,因加入支撐材後發現磺酸化高分子支撐材複合膜之質子導電度會下降20~25%,因此本研究使用聚乙二醇(PEG)作為交聯劑混摻進磺酸化聚芳香醚高分子期望能提高薄膜質子導電度。 混摻PEG系列薄膜由質子導電度量測後發現混摻比例為0.1%及0.5%為最佳比例,其質子導電度在80oC、95%RH環境下可達228.31~235.63 mS/cm,相較純膜SP4能有效提升(187.37 mS/cm),因此ePTFE系列薄膜會混入0.1%PEG及0.5%PEG去提升複合膜特性。 ePTFE系列複合膜皆透過SEM觀察填充後其複合膜的結構變化,結果表明所有磺酸化高分子皆有浸塗於薄膜內部。在80 oC環境下,複合膜的尺寸變化率< 16 %,相較於純膜SP4 (28.7%)能有效降低薄膜在高溫時的尺寸變化。而質子導電度方面,在環境80 oC、95%RH的情況下,SP4+0.5%PEG+ePTFE的質子導電度為192.07 mS/cm皆優於純膜SP4 (187.37 mS/cm)、Nafion 211(113.75 mS/cm)。電池效率的部分,SP4+0.5%PEG+ePTFE的效率為0.88 W/cm2接近純膜SP4的電池效率0.9 W/cm2,綜合上述,添加交聯劑PEG可有效改善質子導電度,而加入支撐材可以有效改善高溫時尺寸變化率,因此複合膜經改良後在單電池測試時能與純膜有接近的效率。 |
Abstract |
In this study, the sulfonated polyarylether polymer (SP4) previously developed by the laboratory was dip-coated the commercially available hydrophilic modified backing material ePTFE. After adding the backing material, it was found that the proton conductivity of the composite membrane would decrease 20~25%, so this study uses polyethylene glycol (PEG) as a cross-linking agent blended with the sulfonated polyaryl ether polymer to improve the proton conductivity of the membrane. The blended with 0.1% and 0.5% is found to be the best ratio after measuring the proton conductivity of the blended with PEG series membranes, and its proton conductivity can achieve 228.31~235.63 mS/cm under the environment of 80oC and 95%RH. The pure membrane SP4 can effectively increase (187.37 mS/cm), so the ePTFE series membranes will be blended with 0.1% PEG and 0.5% PEG to improve the properties of the composite membrane. The structural changes of the ePTFE series composite membranes after filling were observed by SEM, and the results showed that all sulfonated polymers were dip-coated inside the membranes. At 80 oC, the dimensional change rate of the composite membranes is < 16%, which can effectively reduce the dimensional change of the film at high temperature compared with the pure membrane SP4 (28.7%). In terms of proton conductivity, in the environment of 80 oC and 95%RH, the proton conductivity of SP4+0.5%PEG+ePTFE is 192.07 mS/cm, which is better than pure membrane SP4 (187.37 mS/cm), Nafion 211 ( 113.75 mS/cm). In terms of Single Cell Efficiency Measurement, the efficiency of SP4+0.5%PEG+ePTFE is 0.88 W/cm2, which is close to that of pure membrane SP4, which is 0.9 W/cm2. Based on the above, adding cross-linking agent PEG can effectively improve proton conductivity, and adding support material It can effectively improve the dimensional change rate at high temperature, so the modified composite membrane can have an efficiency close to that of the pure membrane in the single cell test. |
目次 Table of Contents |
論文中文審定書i 致謝ii 摘要iii Abstractiv 目錄vi 圖目錄x 表目錄xiii 第一章 序論1 1-1前言1 1-2燃料電池簡介2 1-3質子交換膜燃料電池4 1-3-1元件構造4 1-3-2工作原理5 1-4質子交換膜6 1-4-1質子交換膜性質6 1-4-2質子交換膜傳導機制6 1-4-3質子交換膜種類8 1-5碳氫離子性高分子結構設計10 1-5-1交替型共聚高分子 (Alternating copolymer)11 1-5-2嵌段型共聚高分子 (Block copolymer)11 1-5-3無規型共聚型高分子 (Random copolymer)11 1-5-4接枝型共聚高分子 (Graft copolymer)11 1-6文獻回顧12 1-6-1交替型共聚高分子文獻回顧12 1-6-2混摻聚乙二醇文獻回顧15 1-6-3複合膜文獻回顧18 1-7研究動機21 第二章 儀器原理與量測介紹22 2-1微觀分析儀器22 2-1-1 掃描式電子顯微鏡 (Scanning Eelectron Microscope, SEM)[30]22 2-2鑑定分析儀器23 2-2-1 凝膠滲透層析儀(Gel Permeation Chromatography, GPC)23 2-2-2 數位式旋轉黏度計(Viscometer)[31]24 2-2-3 傅立葉紅外線光譜儀(Fourier Transform infrared spectro scopy,FTIR)25 2-3磺酸化薄膜特性量測25 2-3-1 熱重量分析儀 (Thermogravimetric Analyzer, TGA)25 2-3-2 交流阻抗分析儀 (AC Impedance)26 2-4元件效率量測分析與MEA製備27 2-4-1自動薄膜塗佈機 (Automatic Film Applicator)27 2-4-2超音波霧化噴塗機 (Ultrasonic Spraying System)27 2-4-3燃料電池元件 (Membrane electrode assembly, MEA)28 第三章 實驗步驟29 3-1實驗藥品總表29 3-2實驗流程30 3-2-1 SP4高分子結構圖30 3-2-2 市售交聯劑PEG30 3-2-3 支撐材PTFE30 3-3P4高分子磺酸化31 3-4磺酸化高分子之薄膜製備與特性量測33 3-4-1 黏度分析33 3-4-2 成膜溶液製備34 3-4-3 製備磺酸化高分子複合膜與酸的置換34 3-4-4 IEC 測定36 3-4-5 吸水率及尺寸安定性測試37 3-4-6 Hydration number (λ)38 3-4-7 水解與氧化穩定性39 3-5膜電極組件製備40 3-5-1 黏著劑製備40 3-5-2 膜電極組製備40 第四章 結果與討論41 4-1SEM/EDX微觀分析41 4-2GPC分析44 4-3 TGA熱穩定性分析45 4-4 磺酸化薄膜之化學、物理性質分析47 4-4-1 薄膜IEC值、吸水率及λ值48 4-4-2 尺寸安定性51 4-4-3 氧化穩定性及水解穩定性54 4-5 複合膜之質子導電度數據分析55 4-6 燃料電池元件效率分析58 第五章 結論61 參考文獻63 第六章 附錄68 附錄6-1 FT-IR68 |
參考文獻 References |
[1]Rahman, A., Farrok, O., & Haque, M. M. (2022). Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable & Sustainable Energy Reviews, 161, 29, 112279. [2]賴志遠. (2015). 未來的氫社會. https://portal.stpi.narl.org.tw/index/article/10082 [3]Alstom™. (2022). World premiere: 14 Coradia iLint to start passenger service on first 100% hydrogen operated route. https://www.alstom.com/press-releases-news/2022/8/world-premiere-14-coradia-ilint-start-passenger-service-first-100 [4]van Biert, L., Godjevac, M., Visser, K., & Aravind, P. V. (2016). A review of fuel cell systems for maritime applications. Journal of Power Sources, 327, 345-364. [5]財團法人台灣經濟研究院. (2023). 燃料電池介紹種類. https://www.thfcp.org.tw/xmdoc/cont?xsmsid=0L291536251233837898 [6]de-Troya, J. J., Alvarez, C., Fernandez-Garrido, C., & Carral, L. (2016). Analysing the possibilities of using fuel cells in ships. International Journal of Hydrogen Energy, 41(4), 2853-2866. [7]Inal, O. B., & Deniz, C. (2020). Assessment of fuel cell types for ships: Based on multi-criteria decision analysis. Journal of Cleaner Production, 265, 10, 121734. [8]Li, X. G., & Sabir, M. (2005). Review of bipolar plates in PEM fuel cells: Flow-field designs. International Journal of Hydrogen Energy, 30(4), 359-371. [9]Ma, S., Lin, M., Lin, T. E., Lan, T., Liao, X., Marechal, F., Van Herle, J., Yang, Y. P., Dong, C. Q., & Wang, L. G. (2021). Fuel cell-battery hybrid systems for mobility and off-grid applications: A review. Renewable & Sustainable Energy Reviews, 135, 20, 110119. [10]Hsueh_Kan-Lin. (2018). Fuel Cell (02-4) 燃料電池種類 - 單電池元件. https://www.youtube.com/watch?v=_ugI-2A1E7U [11]Yuan, Y., Qu, Z., Wang, W., Ren, G., & Hu, B. (2019). Illustrative case study on the performance and optimization of proton exchange membrane fuel cell. ChemEngineering, 3(1), 23. [12]Klose, C. (2020). Novel polymer electrolyte membrane compositions for electrolysis and fuel cell systems Universität]. [13]Hickner, M. A., Ghassemi, H., Kim, Y. S., Einsla, B. R., & McGrath, J. E. (2004). Alternative polymer systems for proton exchange membranes (PEMs). Chemical Reviews, 104(10), 4587-4611. [14]Rikukawa, M., & Sanui, K. (2000). Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Progress in Polymer Science, 25(10), 1463-1502. [15]Feng, S. N., Shen, K. Z., Wang, Y., Pang, J. H., & Jiang, Z. H. (2013). Concentrated sulfonated poly (ether sulfone)s as proton exchange membranes. Journal of Power Sources, 224, 42-49. [16]Basura, V. I., Beattie, P. D., & Holdcroft, S. (1998). Solid-state electrochemical oxygen reduction at Pt vertical bar Nafion (R) 117 and Pt vertical bar BAM3G (TM) 407 interfaces. Journal of Electroanalytical Chemistry, 458(1-2), 1-5. [17]James, C. W., Cornelius, C., & Marand, E. (2009). The effect of temperature and humidity on the oxygen sorption in Diels-Alder polyphenylenes. Polymer, 50(14), 3220-3224. [18]Zuo, Z. C., Fu, Y. Z., & Manthiram, A. (2012). Novel Blend Membranes Based on Acid-Base Interactions for Fuel Cells. Polymers, 4(4), 1627-1644. [19]Laberty-Robert, C., Valle, K., Pereira, F., & Sanchez, C. (2011). Design and properties of functional hybrid organic-inorganic membranes for fuel cells. Chemical Society Reviews, 40(2), 961-1005. [20]Huang, J., & Turner, S. R. (2017). Recent advances in alternating copolymers: The synthesis, modification, and applications of precision polymers. Polymer, 116, 572-586. [21]李旭峰. (2015). 高分子電解質之製備與燃料電池應用評估 國立中山大學]. 高雄市. https://hdl.handle.net/11296/6k95jz [22]Lim, Y., Lee, H., Lee, S., Jang, H., Hossain, M. A., Cho, Y., Kim, T., Hong, Y., & Kim, W. (2014). Synthesis and properties of sulfonated poly(phenylene sulfone)s without ether linkage by Diels-Alder reaction for PEMFC application. Electrochimica Acta, 119, 16-23. [23]Adamski, M., Skalski, T. J. G., Britton, B., Peckham, T. J., Metzler, L., & Holdcroft, S. (2017). Highly Stable, Low Gas Crossover, Proton-Conducting Phenylated Polyphenylenes. Angewandte Chemie-International Edition, 56(31), 9058-9061. [24]王冠翔. (2022). 離子型聚芳香醚複合材料對於質子交換膜之特性探討 國立中山大學]. 高雄市. https://hdl.handle.net/11296/n7d7ay [25]Pokprasert, A., & Chirachanchai, S. (2017). Polymer electrolyte membrane with heterocyclic terminated poly(ethylene glycol) brushes: An approach to decorate proton conductive species on membrane surface. Journal of Membrane Science, 524, 550-556. [26]Li, Z. L., Liu, X. C., Chao, D. M., Lu, X. F., He, L. B., Yang, Y., & Zhang, W. J. (2010). Crosslinked Sulfonated Poly(arylene ether ketone) with Pendant Carboxylic Acid Group via Poly(ethylene glycol) for Proton Exchange Membrane. Journal of Applied Polymer Science, 118(6), 3318-3323. [27]郭玟慧. (2022). 利用電場將磺酸化高分子填充於ePTFE支撐材之研究 國立中山大學]. 高雄市. https://hdl.handle.net/11296/j6zv8j [28]Huang, Z. Y., Lv, B., Zhou, L., Wei, T., Qin, X. P., & Shao, Z. G. (2022). Ultra-thin h-BN doped high sulfonation sulfonated poly (ether-ether-ketone) of PTFE-reinforced proton exchange membrane. Journal of Membrane Science, 644, 6, 120099. [29]Xing, D. M., He, G. H., Hou, Z. J., Ming, P. W., & Song, S. F. (2011). Preparation and characterization of a modified montmorillonite/sulfonated polyphenylether sulfone/PTFE composite membrane. International Journal of Hydrogen Energy, 36(3), 2177-2183. [30]高解析掃描式電子顯微鏡/High Resolution Scanning Electron Microscope. https://ctrmost-cfc.ncku.edu.tw/p/404-1210-7292.php?Lang=zh-tw [31]Barber, E. M., Muenger, J. R., & Villforth, F. J. (1955). A HIGH RATE OF SHEAR ROTATIONAL VISCOMETER. Analytical Chemistry, 27(3), 425-429. [32]Pyris 1 TGA Thermogravimetric Analyzer. https://www.artisantg.com/PLC/63254-1/Perkin-Elmer-Pyris-1-TGA-Thermogravimetric-Analyzer [33]4294A Precision Impedance Analyzer. https://www.keysight.com/us/en/product/4294A/precision-impedance-analyzer-40-hz-to-110-mhz.html [34]濕膜塗佈機 ZAA 2300. https://www.chuanhua.com.tw/product/%E6%BF%95%E8%86%9C%E5%A1%97%E4%BD%88%E6%A9%9F-zaa-2300/ [35]PRISM-400 BT https://www.ultraspray.com/uniform-precise-coatings/products/prism-400/ [36]黃鎮江. (2017). 燃料電池Fucl CEll 第4版.全華圖書股份有限公司. [37]Moukheiber, E., De Moor, G., Flandin, L., & Bas, C. (2012). Investigation of ionomer structure through its dependence on ion exchange capacity (IEC). Journal of Membrane Science, 389, 294-304. [38]Ye, Y. S., Yen, Y. C., Cheng, C. C., Chen, W. Y., Tsai, L. T., & Chang, F. C. (2009). Sulfonated poly(ether ether ketone) membranes crosslinked with sulfonic acid containing benzoxazine monomer as proton exchange membranes. Polymer, 50(14), 3196-3203. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2028-07-31 校外 Off-campus:開放下載的時間 available 2028-07-31 您的 IP(校外) 位址是 3.139.234.66 現在時間是 2025-04-27 論文校外開放下載的時間是 2028-07-31 Your IP address is 3.139.234.66 The current date is 2025-04-27 This thesis will be available to you on 2028-07-31. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2028-07-31 |
QR Code |