Responsive image
博碩士論文 etd-0705123-141718 詳細資訊
Title page for etd-0705123-141718
論文名稱
Title
馬祖海域露脊鼠海豚 (Neophocaena spp.) 鎘濃度和碳氮同位素分析之研究
Cd Concentration and C, N Stable Isotope Analysis of Finless Porpoises (Neophocaena spp.) from Matsu
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
47
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2023-07-20
繳交日期
Date of Submission
2023-08-05
關鍵字
Keywords
鎘的生物累積、非必需元素、生長稀釋、母源轉移、穩定氮同位素趨勢、穩定碳氮同位素
Cd bioaccumulation pattern, non-essential element, growth dilution, maternal transfer, δ15N pattern, nitrogen and carbon stable isotope
統計
Statistics
本論文已被瀏覽 56 次,被下載 0
The thesis/dissertation has been browsed 56 times, has been downloaded 0 times.
中文摘要
本研究使用2004年至2015年間在馬祖擱淺的22頭露脊鼠海豚(Neophocaen spp.) 樣本進行分析。我們測定它們肝臟、腎臟、肌肉和肺臟中的鎘 (Cd) 濃度,以了解它們生活環境中鎘的污染狀況。另外,我們還檢測了氮和碳的穩定同位素,以評估它們的營養階層和食物來源。根據露脊鼠海豚的生長和發育狀態,我們將樣本被分為「幼體和青少年」和「亞成體和成體」兩組。在這兩個年齡組中,δ15N的比值與體長之間分別呈現接近顯著的負相關和正相關,這意味著露脊鼠海豚在不同的生命階段存在著食物和營養階層的轉變。δ13C的比值與體長在兩個年齡組中均不相關,這表示不同年齡組中不存在離岸遷徙或底棲、遠海食源的轉變。我們也發現在這兩個年齡組中,腎臟、肝臟和肌肉中的鎘濃度都與體長呈現顯著或接近顯著的線性相關。鎘濃度在露脊鼠海豚幼體和青少年的時期會隨體長增加而降低,當個體達到亞成體階段時則會隨體長增加而增加。δ13C與肌肉中的鎘也被發現有顯著的負相關,這代表著較遠洋的食物來源會使肌肉中的鎘濃度上升。結合穩定碳氮同位素的結果和露脊鼠海豚的生長曲線,我們推論鎘在露脊鼠海豚中的生物累積趨勢是由於母源鎘轉移、生長稀釋和污染物累積所導致的。另外,馬祖水域的鎘污染狀況相對於中國沿岸其他地區較輕微,這可以從馬祖露脊鼠海豚組織中較低的鎘濃度得到佐證。綜合以上分析,年紀、環境污染與食物來源都會影響露脊鼠海豚體內鎘的濃度。
Abstract
Twenty-two finless porpoises (Neophocaena spp.) stranded at Matsu collected from 2004 to 2015 were used in this study. We analysed the concentrations of cadmium (Cd) in their liver, kidney, muscle and lung to understand the Cd pollution status in their living environment. Nitrogen and carbon stable isotopes were also examined to assess their trophic level and diet source. Samples were divided into “calves and juveniles” and “subadults and adults” groups according to their growth and development status. δ15N ratios and body length were found to have near-significant negative and positive correlations in the two age groups, respectively, suggesting a diet and trophic level transition in different life stages. δ13C ratios, on the other hand, do not correlate with body length in either age group, indicating no off-shore migration or benthic/pelagic diet shift in different life stages. As for Cd levels, significant or near-significant linear correlations of Cd levels with body length were noted in the kidney, liver and muscle in both age groups. Cd levels decreased in earlier life stages and increased as the individual reached sub-adulthood. δ13C was also found to have a significant negative correlation with muscle Cd, which points to higher Cd accumulation in more pelagic diets. Along with the stable C, N isotopes and growth curve of the finless porpoise, we concluded that the Cd bioaccumulation pattern was influenced by maternal Cd transfer, growth dilution and pollutant accumulation. Moreover, the Cd pollution status in Matsu waters had been less severe than in other regions along the Chinese coast, and this could be validated in the lower tissue Cd levels in Matsu’s finless porpoises. To sum up, age, habitat pollution and diet source are all factors that influence Cd levels in the finless porpoise.
目次 Table of Contents
論文審定書………………………………………………………… i
中文摘要…………………………………………………………… ii
Abstract …………………………………………………………… iii
1. Introduction …………………………………………………… 1
1.1 Cadmium (Cd) Pollution …………………………………… 1
1.2 C, N Stable Isotope ………………………………………… 2
1.3 Finless Porpoises …………………………………………… 3
1.4 Maternal Transfer of Contaminants ………………………… 4
1.5 Aim of this Study …………………………………………… 5
2. Materials and Methods ………………………………………… 6
2.1 Data Collection and Sample Preparation …………………… 6
2.2 Cd Analysis ………………………………………………… 6
2.3 C, N Stable Isotope Analysis ……………………………… 7
2.4 Data Analysis ……………………………………………… 8
3. Results …………………………………………………………. 9
3.1 Sample Characteristics and Grouping ……………………… 9
3.2 C, N Stable Isotope ………………………………………… 10
3.3 Tissue Distribution of Cd ………………………………… 10
3.4 Cd Concentration and Body Length ……………………… 11
4. Discussion …………………………………………………… 12
4.1 The Habitat and Distribution of Finless Porpoise around Matsu … 12
4.2 Marine Cd Pollution Indicator……………………………… 12
4.3 Cd as an Ecological Tracer ………………………………… 14
4.4 δ15N Level Pattern ………………………………………… 15
4.5 Maternal Transfer, Growth Dilution and Cd Bioaccumulation …… 16
4.6 Conservation Implications ………………………………… 17
5. Conclusion ………………………………………………… 18
References………………………………………………………19
Figures ………………………………………………………… 26
Tables ………………………………………………………… 34
參考文獻 References
Amano, M. (2018). Finless Porpoises: Neophocaena phocaenoides, N. asiaeorientalis. In Encyclopedia of marine mammals, pp. 372-375. Academic Press.
Bennett, P.M., Jepson, P. D., Law, R. J., Jones, B. R., Kuiken, T., Baker, J. R., ... & Kirkwood, J. K. (2001). Exposure to heavy metals and infectious disease mortality in harbour porpoises from England and Wales. Environmental pollution, 112(1), 33-40.
Bi, S., Yang, Y., Xu, C., Zhang, Y., Zhang, X., & Zhang, X. (2017). Distribution of heavy metals and environmental assessment of surface sediment of typical estuaries in eastern China. Marine Pollution Bulletin, 121(1-2), 357-366.
Boran, M., & Altınok, I. (2010). A review of heavy metals in water, sediment and living organisms in the Black Sea. Turkish Journal of Fisheries and Aquatic Sciences, 10(4).
Brodie, P. F. (1969). Duration of lactation in Cetacea: an indicator of required learning? American Midland Naturalist, 312-314.
Bustamante, P., Caurant, F., Fowler, S. W., & Miramand, P. (1998). Cephalopods as a vector for the transfer of cadmium to top marine predators in the north-east Atlantic Ocean. Science of the Total Environment, 220(1), 71-80.
Bustamante, P., Cosson, R. P., Gallien, I., Caurant, F., & Miramand, P. (2002). Cadmium detoxification processes in the digestive gland of cephalopods in relation to accumulated cadmium concentrations. Marine environmental research, 53(3), 227-241.
Chandravanshi, L., Shiv, K., & Kumar, S. (2021). Developmental toxicity of cadmium in infants and children: a review. Environmental Analysis, Health and Toxicology, 36(1).
Chen, M. H. (2002). Baseline metal concentrations in sediments and fish, and the determination of bioindicators in the subtropical Chi-ku Lagoon, SW Taiwan. Marine Pollution Bulletin, 44(7), 703-714.
Chen, M. H., Zhuang, M. F., Chou, L. S., Liu, J. Y., Shih, C. C., & Chen, C. Y. (2017). Tissue concentrations of four Taiwanese toothed cetaceans indicating the silver and cadmium pollution in the western Pacific Ocean. Marine Pollution Bulletin, 124(2), 993-1000.
Cloyed, C. S., Johnson, C. I., DaCosta, K. P., Clance, L. R., Russell, M. L., Díaz Clark, C., ... & Carmichael, R. H. (2023). Effects of tissue decomposition on stable isotope ratios and implications for use of stranded animals in research. Ecosphere, 14(2), e4385.
Das, K., Beans, C., Holsbeek, L., Mauger, G., Berrow, S. D., Rogan, E., & Bouquegneau, J. M. (2003a). Marine mammals from the Northeast Atlantic: evaluation of their trophic position by d13C and d15N measurements and influence on their trace metals concentrations. Marine Environmental Research, 56, 349-365.
Das, K., Debacker, V., Pillet, S., & Bouquegneau, J. M. (2003b). Heavy metals in marine mammals. Toxicology of marine mammals, 3, 135-167.
Das, K., Holsbeek, L., Browning, J., Siebert, U., Birkun Jr, A., & Bouquegneau, J. M. (2004). Trace metal and stable isotope measurements (δ13C and δ15N) in the harbour porpoise Phocoena phocoena relicta from the Black Sea. Environmental Pollution, 131(2), 197-204.
Fontaine, M. C., Tolley, K. A., Siebert, U., Gobert, S., Lepoint, G., Bouquegneau, J. M., & Das, K. (2007). Long-term feeding ecology and habitat use in harbour porpoises Phocoena phocoena from Scandinavian waters inferred from trace elements and stable isotopes. BMC ecology, 7, 1-12.
Fry, B. (2006). Stable isotope ecology (Vol. 521, p. 318). New York: Springer.
Frodello, J. P., Viale, D., & Marchand, B. (2002). Metal concentrations in the milk and tissues of a nursing Tursiops truncatus female. Marine Pollution Bulletin, 44(6), 551-554.
Gao, A., & Zhou, K. (1993). Growth and reproduction of three populations of finless porpoise, Neophocaena phocaenoides. Chinese waters. Aquatic Mammals, 19(1), 3-12.
Goering, P. L., Waalkes, M. P., & Klaassen, C. D. (1995). Toxicology of cadmium. In Toxicology of metals: biochemical aspects (pp. 189-214). Berlin, Heidelberg: Springer Berlin Heidelberg.
Hansen, A. M., Bryan, C. E., West, K., & Jensen, B. A. (2016). Trace element concentrations in liver of 16 species of cetaceans stranded on Pacific Islands from 1997 through 2013. Archives of environmental contamination and toxicology, 70, 75-95.
Hao, X., Shan, H., Wu, C., Zhang, D., & Chen, B. (2020). Two Decades’ Variation of Trace Elements in Bones of the Endangered East Asian Finless Porpoise (Neophocaena asaeorientalis sunameri) from the East China Sea, China. Biological Trace Element Research, 198(2), 493-504.
Haseeb-ur-Rehman,M.,Munshi, A. B., Atique, U., & Kalsoom, S. (2023).Metal pollution and potential human health risk assessment in major seafood items (fish, crustaceans, and cephalopods). Marine Pollution Bulletin, 188, 114581.
Hayes, K. R., Ylitalo, G. M., Anderson, T. A., Urbán R, J., Jacobsen, J. K., Scordino, J. J., ... & Godard-Codding, C. A. (2022). Influence of Life-History Parameters on Persistent Organic Pollutant Concentrations in Blubber of Eastern North Pacific Gray Whales (Eschrichtius robustus). Environmental science & technology, 56(23), 17119-17130.
Heide-Jørgensen, M. P., & Lockyer, C. (1998). The biology of harbour porpoises from West Greenland. In The World Marine Mammal Science 12th Biennial Conference.
Hobson, K. A., & Clark, R. G. (1992). Assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation. The Condor, 94(1), 189-197.
Hobson, K. A. (1999). Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia, 314-326.
Hung, C. L., Lau, R. K., Lam, J. C., Jefferson, T. A., Hung, S. K., Lam, M. H., & Lam, P. K. (2007). Risk assessment of trace elements in the stomach contents of Indo-Pacific humpback dolphins and finless porpoises in Hong Kong waters. Chemosphere, 66(7), 1175-1182.
IJsseldijk, L. L., Brownlow, A. C., & Mazzariol, S. (2019). European best practice on cetacean post-mortem investigation and tissue sampling.
IUCN 2021. The IUCN Red List of Threatened Species. Version 2021-2. https://www.iucnredlist.org. Downloaded on 16th September 2021.
Jefferson, T. A., Robertson, K. M., & Wang, J. Y. (2002). Growth and reproduction of the finless porpoise in southern China. Raffles Bulletin of Zoology, 50, 105-114.
Jing, H. A. O., Houhe, Z. H. A. N. G., Chunrong, L. I.,Wenzhao, Z. H. A. N. G., Fanyi, L. I., Han, Y. A. N., & Qingmei, X. U. (2021). Petroleum exploration history and enlightenment in Bohai sea. Xinjiang Petroleum Geology, 42(3), 328.
Jitar, O., Teodosiu, C., Nicoara, M., & Plavan, G. (2013). Study of heavy metal pollution and bioaccumulation in the Black Sea living environment. Environmental Engineering & Management Journal (EEMJ), 12(2).
Karimi, R., Fisher, N. S., & Folt, C. L. (2010). Multielement stoichiometry in aquatic invertebrates: when growth dilution matters. The American Naturalist, 176(6), 699-709.
Kasuya, T., & Kureha, K. (1979). The population of finless porpoise in the Inland Sea of Japan. Scientific Reports of the Whales Research Institute, 31, 1-44.
Kasuya, T. (1998). Finless Porpoise Neophocaena phocaenoides. Handbook of marine mammals: the second book of dolphins and the porpoises, 411.
Kippler, M., Tofail, F., Hamadani, J. D., Gardner, R. M., Grantham-McGregor, S. M., Bottai, M., & Vahter, M. (2012). Early-life cadmium exposure and child development in 5-year-old girls and boys: a cohort study in rural Bangladesh. Environmental health perspectives, 120(10), 1462-1468.
Klaassen, C. D., Liu, J., & Choudhuri, S. (1999).Metallothionein: an intracellular protein to protect against cadmium toxicity. Annual review of pharmacology and toxicology, 39(1), 267-294.
Kubier, A., Wilkin, R. T., & Pichler, T. (2019). Cadmium in soils and groundwater: a review. Applied Geochemistry, 108, 104388.
Lu, Z., Xu, S., Song, N., Gao, T., Tian, J., & Han, J. (2016). Analysis of the diet of finless porpoise (Neophocaena asiaeorientalis sunameri) based on prey morphological characters and DNA barcoding. Conservation Genetics Resources, 8, 523-531.
Meissner, A. M., MacLeod, C. D., Richard, P., Ridoux, V., & Pierce, G. (2012). Feeding ecology of striped dolphins, Stenella coeruleoalba, in the north-western Mediterranean Sea based on stable isotope analyses. Journal of the Marine Biological Association of the United Kingdom, 92(8), 1677-1687.
Niño‐Torres, C. A., Gallo‐Reynoso, J. P., Galván‐Magaña, F., Escobar‐Briones, E., & Macko, S. A. (2006). Isotopic analysis of δ13C, δ15N, and δ34S “a feeding tale” in teeth of the longbeaked common dolphin, Delphinus capensis. Marine Mammal Science, 22(4), 831-846.
Oftedal, O. T. (1997). Lactation in whales and dolphins: evidence of divergence between baleen-and toothed-species. Journal of mammary gland biology and neoplasia, 2, 205-230.
Oh, Y., Sohn, H., Lee, D., An, Y. R., Kang, C. K., Kang, M. G., & Lee, S. H. (2018). Feeding Patterns of ‘Finless Porpoise (Neophocaena asiaeorientalis)’in the Yellow Sea as Indicated by Stable Carbon and Nitrogen Isotope Ratios. Journal of Coastal Research, (85), 386-390.
Ramon, D., Morick, D., Croot, P., Berzak, R., Scheinin, A., Tchernov, D., ... & Britzi, M. (2021). A survey of arsenic, mercury, cadmium, and lead residues in seafood (fish, crustaceans, and cephalopods) from the south‐eastern Mediterranean Sea. Journal of Food Science, 86(3), 1153-1161.
Reidenberg, J. S., & Laitman, J. T. (2009). Cetacean prenatal development. In Encyclopedia of marine mammals (pp. 220-230). Academic Press.
Rodrigo, A. P., & Costa, P. M. (2017). The role of the cephalopod digestive gland in the storage and detoxification of marine pollutants. Frontiers in Physiology, 8, 232.
Rossipal, E., Krachler,M., Li, F., & Micetic‐Turk, D. (2000). Investigation of the transport of trace elements across barriers in humans: studies of placental and mammary transfer. Acta Paediatrica, 89(10), 1190-1195.
Santos, M. B., Pierce, G. J., Learmonth, J. A., Reid, R. J., Ross, H.M., Patterson, I. A. P., ... & Beare, D. (2004). Variability in the diet of harbor porpoises (Phocoena phocoena) in Scottish waters 1992–2003. Marine Mammal Science, 20(1), 1-27.
Sarkar, A., Ravindran, G., & Krishnamurthy, V. (2013). A brief review on the effect of cadmium toxicity: from cellular to organ level. Int J Biotechnol Res, 3(1), 17-36.
Sweeting, C. J., Polunin, N. V. C., & Jennings, S. (2006). Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Communications inMass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry, 20(4), 595-601.
Szefer, P., Malinga, M., Czarnowski, W., & Skóra, K. (1995). Toxic, essential and non-essential metals in harbour porpoises of the Polish Baltic Sea. In Developments in Marine Biology (Vol. 4, pp. 617-622). Elsevier Science.
Szefer, P., Zdrojewska, I., Jensen, J., Lockyer, C., Skora, K., Kuklik, I., & Malinga, M. (2002). Intercomparison studies on distribution and coassociations of heavy metals in liver, kidney, and muscle of harbor porpoise, Phocoena phocoena, from southern Baltic Sea and coastal waters of Denmark and Greenland. Archives of environmental contamination and toxicology, 42, 508-522.
Teigen, S. W., Andersen, R. A., Daae, H. L., & Skaare, J. U. (1999). Heavy metal content in liver and kidneys of grey seals (Halichoerus grypus) in various life stages correlated with metallothionein levels: Some metal—binding characteristics of this protein. Environmental Toxicology and Chemistry: An International Journal, 18(10), 2364-2369.
Tian, J., Gan, Z., Sanganyado, E., Lu, Z., Wu, J., Han, J., & Liu, W. (2021). Tissue distribution and health risk of trace elements in East Asian finless porpoises. Environmental Pollution, 290, 118007.
Tonay, A. M., Dede, A., Ozturk, A. A., & Ozturk, B. (2007). Stomach contents of harbour porpoises(Phocoena phocoena) from the Turkish Western Black Sea in spring and early summer. In CIESM Congress Proceedings (No. 38). CIESM, Monaco.
Wang, R., & Wang, W. X. (2012). Contrasting mercury accumulation patterns in tilapia (Oreochromis niloticus) and implications on somatic growth dilution. Aquatic toxicology, 114, 23-30.
Xiong, X., Qian, Z., Mei, Z., Wu, J., Hao, Y., Wang, K., ... & Wang, D. (2019). Trace elements accumulation in the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis)–a threat to the endangered freshwater cetacean. Science of the total environment, 686, 797-804.
Yao, C. J., Ku F. C., Chang,M.,Wang, C. T., Kuo, W. W., & Chou, L. S. (2013). Chronological Distribution Pattern of Finless Porpoises along Coastal Matzu Islands Based on Stranding, Bycaught and Landbased Sighting Surveys. Taiwan Journal of Biodiversity, 15 (1), 33- 48.
Yao, C. J., Chang, M., Wang, C. T. (2012). Stranding pattern analysis of the cetaceans around Taiwan. Forestry Bureau, Council of Agriculture, Executive Yuan, pp. 26.
Yurdakök, K. (2015). Lead, mercury, and cadmium in breast milk. Journal of Pediatric and Neonatal Individualized Medicine (JPNIM), 4(2), e040223-e040223.
Zhang, L. (2017). Different methods for the evaluation of surface water quality: The Case of the Liao River, Liaoning Province, China. International review for spatial planning and sustainable development, 5(4), 4-18.
Zhang, X., Lin, W., Yu, R. Q., Sun, X., Ding, Y., Chen, H., ... & Wu, Y. (2017). Tissue partition and risk assessments of trace elements in Indo-Pacific Finless Porpoises (Neophocaena phocaenoides) from the Pearl River Estuary coast, China. Chemosphere, 185, 1197-1207.
Zhao, X., Zhang, Q., He, G., Zhang, L., & Lu, Y. (2021). Delineating pollution threat intensity from onshore industries to coastal wetlands in the Bohai Rim, the Yangtze River Delta, and the Pearl River Delta, China. Journal of Cleaner Production, 320, 128880.
Zhuo, W., Ding, W., Qingzhong, Z., Kexiong, W., & Xinan, K. (2002). Population size, behavior, movement pattern and protection of Yangtze finless porpoise at Balijiang section of the Yangtze River. Resources and Environment in the Yangtze Valley, 11(5), 427-432.
Zhou, X., Guang, X., Sun, D., Xu, S., Li, M., Seim, I., ... & Yang, G. (2018). Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nature communications, 9(1), 1-8.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2028-08-05
校外 Off-campus:開放下載的時間 available 2028-08-05

您的 IP(校外) 位址是 18.119.159.196
現在時間是 2024-11-22
論文校外開放下載的時間是 2028-08-05

Your IP address is 18.119.159.196
The current date is 2024-11-22
This thesis will be available to you on 2028-08-05.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2028-08-05

QR Code