論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-08-05
校外 Off-campus:開放下載的時間 available 2026-08-05
論文名稱 Title |
結合財務與技術指標之機器學習建構以預測公司併購交易對象 A Study of M&A Classifier based on Patent and Finance Metrics |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
77 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-07-04 |
繳交日期 Date of Submission |
2023-08-05 |
關鍵字 Keywords |
金融科技、合併與併購(M&A)、機器學習、併購後分析、dov2vec、財務與技術指標 Fintech, M&A, Machine Learning, Post-Merger, Dov2Vec, Financial and Knowledge Indicators |
||
統計 Statistics |
本論文已被瀏覽 287 次,被下載 0 次 The thesis/dissertation has been browsed 287 times, has been downloaded 0 times. |
中文摘要 |
在全球經濟日益緊密下,併購已成為全球商業領域中的重要趨勢,促使公司進行所有權、資產和經營單位的合併和轉移。在數位轉型和金融科技新創公司崛起的時代,金融服務業迅速成長,更加顯示了有效合作策略的重要性。因此本研究運用機器學習技術,針對金融科技(Fintech)產業中的併購(M&A)交易進行預測,採用財務模型和技術模型的方法,以預測潛在的併購交易對象,並評估公司合併後的績效和創新情況。除了整合財務指標和技術指標外,還引入了文化(cultural fit)、潛在(potential fit)和相似性(similarity fit)等變數,以增強預測能力並深入瞭解影響併購結果的因素。其中,潛在變數包括公司參與活動的數量和文章數量、公司創始人數量、競爭對手數量等;而相似性變數則使用了doc2vec方法計算兩間公司的技術相似程度。研究結果顯示,技術模型優於財務模型,並強調了專利相關指標和相似性變數的重要性,在訓練模型中相似性變數為重要指標,此外,在併購後分析的部分,公司參與的事件數量對合併後的公司績效具有顯著影響。最後,此研究為高階管理人員提供了有價值的併購決策工具,結合了財務和專利數據,以更加了解併購中的關鍵因素,同時提供了進一步研究的方向和建議,以促進學術和實務上對於併購領域的深入瞭解。 |
Abstract |
This study utilizes machine learning techniques to predict M&A transactions in the fintech industry, adopting a financial and technical model approach to anticipate potential M&A targets and assess post-merger performance and innovation. Besides integrating financial and technical indicators, the study also introduces variables such as cultural fit, potential fit, and similarity fit to enhance predictive capabilities and delve deeper into factors affecting M&A outcomes. The findings reveal the knowledge-based model's superiority over the financial-based one, highlighting the significance of patent-related indicators and similarity variables as key in model training. Moreover, the number of events a company participates in significantly impacts post-merger performance. Ultimately, this study offers valuable decision-making tools for senior management, incorporating financial and patent data to better understand key factors in M&A, providing directions and suggestions for further research, and facilitating a more in-depth understanding of the M&A field both academically and practically. |
目次 Table of Contents |
論文審定書 i 摘要 ii Abstract iii CHAPTER 1- Introduction 1 1.1 Background 1 1.2 Purpose 3 CHAPTER 2- Literature Review 6 2.1 Technology M&A 6 2.1.1 Partner Selection 7 2.1.2 Post-Merger Outcomes 8 2.2 Variables for M&A Prediction 10 2.2.1 Cultural Indicators 10 2.2.2 Financial Indicators 12 2.2.3 Knowledge Indicators 14 2.2.4 Potential Indicators 17 CHAPTER 3- Proposed Model 19 3.1 Variables for M&A Prediction 24 3.1.1 Cultural Fit 24 3.1.2 Financial Fit 26 3.1.3 Knowledge Fit 27 3.1.4 Potential Fit 29 3.1.5 Similarity Fit 30 3.2 Merging Partner Matching 35 3.2.1 Training Phase 36 3.2.2 Prediction Phase 40 3.3 Post-Merger 41 3.4 Dependent Variables for Post-Merger 42 CHAPTER 4- Data and Experiment 45 4.1 Data Collection 45 4.2 Preprocessing 45 4.3 Evaluation Design 47 4.4 Experiment Results 48 4.4.1 Merging Partner Matching 49 4.4.2 Post-Merger 56 CHAPTER 5- Conclusion 62 5.1 Conclusion 62 5.2 Limitations and Further Research 63 Reference 66 |
參考文獻 References |
Almeida, P., Dokko, G., & Rosenkopf, L. (2003). Startup size and the mechanisms of external learning: increasing opportunity and decreasing ability? Research Policy, 32(2), 301-315. Arruda, C., Nogueira, V. S., & Costa, V. (2013). The Brazilian entrepreneurial ecosystem of startups: An analysis of entrepreneurship determinants in Brazil as seen from the OECD pillars. Journal of Entrepreneurship and Innovation Management, 2(3), 17-57. Ashfaq, K., Usman, M., Hanif, Z., & Yousaf, T. (2014). Investigating the impact of merger & acquisition on post merger financial performance (Relative & absolute) of companies (Evidence from non-financial sector of Pakistan). International Journal of Academic Research in Business and Social Sciences, 4(11), 2222-6990. Barkema, H. G., Bell, J. H., & Pennings, J. M. (1996). Foreign entry, cultural barriers, and learning. Strategic Management Journal, 17(2), 151-166. Bena, J., & Li, K. (2014). Corporate innovations and mergers and acquisitions. The Journal of Finance, 69(5), 1923-1960. Berkson, J. (1944). Application of the logistic function to bio-assay. Journal of the American statistical association, 39(227), 357-365. Berman, K., & Knight, J. (2009). When is debt good. Harvard Bus. Rev.(July 8), https://hbr. org/2009/07/when-is-debt-good. Bertrand, O., & Capron, L. (2015). Productivity enhancement at home via cross‐border acquisitions: The roles of learning and contemporaneous domestic investments. Strategic Management Journal, 36(5), 640-658. Bierly, P., & Chakrabarti, A. (2009). Generic knowledge strategies in the US pharmaceutical industry. In Knowledge and Strategy (pp. 231-250): Routledge. Bradley, M., Desai, A., & Kim, E. H. (1988). Synergistic gains from corporate acquisitions and their division between the stockholders of target and acquiring firms. Journal of financial Economics, 21(1), 3-40. Breitzman, A., & Thomas, P. (2002). Using patent citation analysis to target/value M&A candidates. Research-Technology Management, 45(5), 28-36. Campa, J. M., & Hernando, I. (2006). M&As performance in the European financial industry. Journal of Banking & Finance, 30(12), 3367-3392. Chen, C., & Findlay, C. (2003). A Review of Cross‐border Mergers and Acquisitions in APEC. Asian‐Pacific Economic Literature, 17(2), 14-38. Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Paper presented at the Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. Christofi, M., Vrontis, D., Thrassou, A., & Shams, S. R. (2019). Triggering technological innovation through cross-border mergers and acquisitions: A micro-foundational perspective. Technological Forecasting and Social Change, 146, 148-166. Daddikar, P., & Shaikh, A. R. H. (2014). Impact of mergers & acquisitions on surviving firm’s financial performance: A study of Jet Airways Ltd. Pacific Business Review International, 6(8), 45-51. Dranev, Y., Frolova, K., & Ochirova, E. (2019). The impact of fintech M&A on stock returns. Research in International Business and Finance, 48, 353-364. Ernst, H. (2003). Patent information for strategic technology management. World patent information, 25(3), 233-242. Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119-139. Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232. Gaughan, P. A. (2010). Mergers, acquisitions, and corporate restructurings: John Wiley & Sons. Hall, B. H., Griliches, Z., & Hausman, J. A. (1984). Patents and R&D: Is there a lag? (0898-2937). Retrieved from Hamel, G., & Prahalad, C. K. (1994). Competing for the future. Harvard business review, 72(4), 122-128. Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support vector machines. IEEE Intelligent Systems and their applications, 13(4), 18-28. Henderson, R., & Cockburn, I. (1994). Measuring competence? Exploring firm effects in pharmaceutical research. Strategic Management Journal, 15(S1), 63-84. Ho, T. K. (1995). Random decision forests. Paper presented at the Proceedings of 3rd international conference on document analysis and recognition. Hofstede, G. (1991). Organizations and cultures: Software of the mind. McGrawHill, New York, 418-506. Huang, L., Shang, L., Wang, K., Porter, A. L., & Zhang, Y. (2015). Identifying target for technology mergers and acquisitions using patent information and semantic analysis. Paper presented at the 2015 Portland International Conference on Management of Engineering and Technology (PICMET). Jagersma, P. K. (2005). Cross-border acquisitions of European multinationals. Journal of General Management, 30(3), 13-34. Kim, H. J., San Kim, T., & Sohn, S. Y. (2020). Recommendation of startups as technology cooperation candidates from the perspectives of similarity and potential: A deep learning approach. Decision support systems, 130, 113229. Malmendier, U., & Tate, G. (2005). CEO overconfidence and corporate investment. The Journal of Finance, 60(6), 2661-2700. Mintz, O., & Currim, I. S. (2013). What drives managerial use of marketing and financial metrics and does metric use affect performance of marketing-mix activities? Journal of marketing, 77(2), 17-40. Mowery, D. C., Oxley, J. E., & Silverman, B. S. (1996). Strategic alliances and interfirm knowledge transfer. Strategic Management Journal, 17(S2), 77-91. Park, H., Yoon, J., & Kim, K. (2013). Identification and evaluation of corporations for merger and acquisition strategies using patent information and text mining. Scientometrics, 97(3), 883-909. Prabhu, J. C., Chandy, R. K., & Ellis, M. E. (2005). The impact of acquisitions on innovation: poison pill, placebo, or tonic? Journal of marketing, 69(1), 114-130. Rao, V. R., Mahajan, V., & Varaiya, N. P. (1991). A balance model for evaluating firms for acquisition. Management Science, 37(3), 331-349. Rao, V. R., Yu, Y., & Umashankar, N. (2016). Anticipated vs. actual synergy in merger partner selection and post-merger innovation. Marketing Science, 35(6), 934-952. Scherer, F. M. (1988). Corporate takeovers: The efficiency arguments. Journal of Economic Perspectives, 2(1), 69-82. Shao, B., Asatani, K., & Sakata, I. (2018). Categorization of mergers and acquisitions in Japan using corporate databases: A fundamental research for prediction. Paper presented at the 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). Sharma, D. S., & Ho, J. (2002). The impact of acquisitions on operating performance: Some Australian evidence. Journal of Business Finance & Accounting, 29(1‐2), 155-200. Shimizu, K., Hitt, M. A., Vaidyanath, D., & Pisano, V. (2004). Theoretical foundations of cross-border mergers and acquisitions: A review of current research and recommendations for the future. Journal of international management, 10(3), 307-353. Song, M., Podoynitsyna, K., Van Der Bij, H., & Halman, J. I. (2008). Success factors in new ventures: A meta‐analysis. Journal of product innovation management, 25(1), 7-27. Suh, J. W., & Sohn, S. Y. (2016). Adaptive conjoint analysis for the vitalisation of angel investments by entrepreneurs. Technology Analysis & Strategic Management, 28(6), 677-690. Toganel, A.-R.-M., & Zhu, M. (2017). Success factors of accelerator backed ventures: Insights from the case of TechStars Accelerator Program. In. Walker, R. D. (1995). Patents as scientific and technical literature: Scarecrow Press. Xiang, G., Zheng, Z., Wen, M., Hong, J., Rose, C., & Liu, C. (2012). A supervised approach to predict company acquisition with factual and topic features using profiles and news articles on techcrunch. Paper presented at the Proceedings of the International AAAI Conference on Web and Social Media. Yang, C. S., Wei, C. P., & Chiang, Y. H. (2014). Exploiting technological indicators for effective technology merger and acquisition (M&A) predictions. Decision Sciences, 45(1), 147-174. Yang, Y.-C., Ke, Y.-S., Wu, W., Lin, K.-P., & Jin, Y. (2019). Recommendation as a Service in Mergers and Acquisitions Transactions. Paper presented at the International Conference on Human-Computer Interaction. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2026-08-05 校外 Off-campus:開放下載的時間 available 2026-08-05 您的 IP(校外) 位址是 3.17.181.122 現在時間是 2024-11-21 論文校外開放下載的時間是 2026-08-05 Your IP address is 3.17.181.122 The current date is 2024-11-21 This thesis will be available to you on 2026-08-05. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2026-08-05 |
QR Code |