Responsive image
博碩士論文 etd-0710123-001536 詳細資訊
Title page for etd-0710123-001536
論文名稱
Title
石油價格波動對股票市場報酬之影響
Energy Price Realized Volatility and Expected Stock Index Returns - a GARCH and Stochastic Volatility in Mean Approach
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2023-07-24
繳交日期
Date of Submission
2023-08-10
關鍵字
Keywords
SV 模型、Kalman Filter、GARCH 模型、已實現波動度 (RV)、油價
SV model, Kalman Filter, GARCH model, Realized Volatility (RV), Oil Price Volatility
統計
Statistics
本論文已被瀏覽 175 次,被下載 2
The thesis/dissertation has been browsed 175 times, has been downloaded 2 times.
中文摘要
本研究觀察石油價格已實現波動度 (Realized Volatility;RV) 是否會影響股票市場的預期報酬,標的為ESTX 50、FTSE 100、KOSPI 200與NIKKEI 225。我們結合隨機波動 (SV) 模型與GARCH模型之性質,並加入油價之RV資訊,觀測是否顯著影響股票市場報酬。SV模型的部分,我們使用Kaiman Filter的方式做計算,透過最大概似函數來估計模型參數,此法的優點是可以處理具有不可直接觀察特性的部分。我們逐步加入新的參數,以控制報酬的自我相關及對條件波動的風險溢酬,並在條件變異數的部分,使用GARCH模型與GJR-GARCH模型兩個版本,後著呈現較好之最大概似值。而RV再區分成好的 (GRV) 與壞的 (BRV) 已實現波動度,觀察四個市場之影響程度。
Abstract
This study examines whether the realized volatility (RV) of oil prices affects stock market returns in European, British, Korean, and Japanese markets. By combining the properties of the Stochastic Volatility (SV) model and the GARCH model and incorporating RV information of oil prices, we investigate the significant impact on stock market returns. The SV model is calculated using the Kalman Filter method, and model parameters are estimated through Quasi-Maximum Likelihood estimation, which allows handling unobservable characteristics. We introduce new parameters to control for return's self-correlation and risk premium with respect to conditional volatility; two versions - GARCH and GJR-GARCH - of conditional variances are estimated, with the latter demonstrating better maximum likelihood values. Furthermore, RV is categorized into Good Realized Volatility (GRV) and Bad Realized Volatility (BRV) to observe their respective influences on the four markets.
目次 Table of Contents
論文審定書 i
致謝辭 ii
摘要 iii
Abstract iv
目錄 v
1. 緒論 1
1.1 研究背景與動機 1
1.2 研究架構 3
2. 政治背景與文獻回顧 4
2.1 石油與政治 4
2.2 文獻回顧 5
2.2.1 油價對於股市影響 5
2.2.2 隨機波動模型 6
2.2.3 GARCH模型 7
3. 資料敘述統計 9
3.1 股票市場 9
3.2 原油價格 10
4. 研究方法 17
4.1 研究模型 17
4.2 建立假說 19
4.3 油價RV與 SV 模型 19
5. 實證結果 22
5.1 隨機波動模型 22
5.2 隨機波動模型修正 22
5.2.1 加入參數 μ 22
5.2.2 GARCH與GJR-GARCH之結果 22
5.2.3 加入參數 θ 以及 λ 23
5.3 加入油價RV資訊 23
5.4 討論與限制 25
6. 結論與建議 47
References 49
Appendix:Lemma in Multi-variate Normal Regression 52
參考文獻 References
Alizadeh S., Brandt M.W. & Diebold F.X. (2002) Range-Based Estimation of Stochastic Volatility Models, The Journal of Finance, Vol. 57, 1047-1091

Andersen T.G., Bollerslev T., Diebold F.X. & Vega C. (2007) Real-time price discovery in global stock, bond and foreign exchange markets, Journal of International Economics, Vol. 73, 251–277

Chan J. C. (2017) The stochastic volatility in mean model with time-varying parameters: an application to inflation modeling, Journal of Business & Economic Statistics, 35:1, 17-28

Chen S.S. (2010) Do higher oil prices push the stock market into bear territory?, Energy Economics, Vol. 32, 490-495

Degiannakis S., Filis G. & Arora V. (2018) Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence, The Energy Journal, Vol. 39, 85-130

Diebold F.X., Schorfheide S. & Shin M. (2017) Real-time forecast evaluation of DSGE models with stochastic volatility, Journal of Econometrics, Vol. 201, 322-332

Faust J., Rogers J.H., Wang S.Y. & Wright J.H. (2007) The high-frequency response of exchange rates and interest rates to macroeconomic announcements, Journal of Monetary Economics, Vol. 54, 1051-1068

Hondroyiannis G. & Papapetrou E. (2001) Macroeconomic influences on the stock market, Journal of Economics and Finance, Vol. 25, 33-49

JO S. (2014) The Effects of Oil Price Uncertainty on Global Real Economic Activity, Journal of Money, Credit and Banking, Vol. 46, 1113-1135

Jones C.M., Kaul G. (1996) Oil and the Stock Markets, The Journal of Finance, Vol. 51, 463-491

Joshua C.C. & Angelia L.G. (2016) Modeling energy price dynamics: GARCH versus stochastic volatility, Energy Economics, Vol. 54, 182-189

Kim S.J., McKenzie M.D. & Faff R.W. (2004) Macroeconomic news announcements and the role of expectations: evidence for US bond, stock and foreign exchange markets, Journal of Multinational Financial Management, Vol. 14, 217-232

Koopman S. J. & Uspensky E. H. (2002) The stochastic volatility in mean model: empirical evidence from international stock markets, Journal of Applied Econometrics, Vol. 17, 667-689

Kwona C. S. & Shin T. S. (1999) Cointegration and causality between macroeconomic variables and stock market returns, Global Finance Journal, 10:1, 71-81

Mun K.C. (2011) The joint response of stock and foreign exchange markets to macroeconomic surprises: Using US and Japanese data, Journal of Banking & Finance, Vol. 36, 383-394

Nonejad N. (2020) Crude oil price volatility and equity return predictability: A comparative out-of-sample study, International Review of Financial Analysis, Vol. 71

Nugroho D.B., Kurniawati D., Panjaitan L.P., Kholil P., Susanto B. & Sasongko L.R. (2019) Empirical performance of GARCH, GARCH-M, GJR-GARCH and log-GARCH models for returns volatility, Journal of Physics: Conference Series

O’Neill T.J., Penm J. & Terrell R.D. (2008) The role of higher oil prices: A case of major developed countries, Research in Finance, Vol. 24, 287-299

Ratanapakorn O. & Sharma S.C. (2007) Dynamic analysis between the US stock returns and the macroeconomic variables, Applied Financial Economics, Vol. 17, 369-377

Gay R.D. (2008) Effect Of Macroeconomic Variables On Stock Market Returns For Four Emerging Economies: Brazil, Russia, India, And China, International Business & Economics Research Journal, Vol. 7, No. 3

Sadorsky P. (1999) Oil price shocks and stock market activity, Energy Economics, Vol. 21, 449-469

Singh T., Mehta S & Varsha M.S. (2011) Macroeconomic factors and stock returns: Evidence from Taiwan, Journal of Economics and International Finance, Vol. 2, 217-227

Taylor S.J. (2005) Asset price dynamics, volatility, and prediction: Princeton University Press

Taylor S.J. & Poon S. (1991) Macroeconomic factors and the UK stock market, Journal of Business Finance & Accounting, Vol. 18, 619-636

Wang J., Huang Y., Ma F. & Chevallier J. (2020) Does high-frequency crude oil futures data contain useful information for predicting volatility in the US stock market? New evidence, Energy Economics, Vol. 91

Xiao J. & Wang Y. (2022) Good oil volatility, bad oil volatility, and stock return predictability, International Review of Economics and Finance, Vol. 80, 953-966
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code