論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2028-08-10
校外 Off-campus:開放下載的時間 available 2028-08-10
論文名稱 Title |
臺灣周邊海域四種鯨豚組織中五種重金屬濃度與碳氮同位素之研究 Concentrations of five heavy metals and C, N stable isotopes in the tissues of four cetacean around Taiwan |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
97 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-07-20 |
繳交日期 Date of Submission |
2023-08-10 |
關鍵字 Keywords |
小抹香鯨、糙齒海豚、種別差異、必需元素、鐵元素、鎘元素 Kogia breviceps, Steno bredanensis, Species differences, Essential element, Iron, Cadmium |
||
統計 Statistics |
本論文已被瀏覽 75 次,被下載 0 次 The thesis/dissertation has been browsed 75 times, has been downloaded 0 times. |
中文摘要 |
本研究收集2003年至2020年間臺灣周遭海域擱淺之小抹香鯨(Kogia breviceps)、糙齒海豚(Steno bredanensis)、印太瓶鼻海豚(Tursiops aduncus)及瓶鼻海豚(Tursiops truncatus),以火焰式及石墨式原子吸收光譜儀進行其肌肉、肝臟、腎臟與肺臟中鐵、鋅、銅、錳與鎘濃度之分析,藉此探討鯨豚體內重金屬濃度之種別和組織差異,及其濃度與體長的相關性。同時分析肌肉中碳氮同位素,探討鯨豚棲地與食階之差異。根據碳氮同位素的結果得知,小抹香鯨和糙齒海豚為主要棲息於較外海與深海的齒鯨,以及小抹香鯨主要攝食深海頭足類為主。重金屬濃度在種別間有蓄積差異,小抹香鯨肌肉及腎臟中鐵濃度(分別為613±189、880±277 mg/kg dry wt.)高於其他三個物種,推測與牠們的潛水能力及生理結構上的不同有關,導致鯨豚對重金屬有不同的需求及利用的情形。本研究發現四種齒鯨其組織中的鐵、鋅、銅及錳元素主要會累積在肝臟中,而鎘元素則是累積在腎臟中。此外,小抹香鯨的肝臟及腎臟中的鐵濃度以及肌肉中的鎘濃度皆與體長呈正相關,而小抹香鯨肌肉中的鋅濃度、腎臟中的錳濃度以及瓶鼻海豚與糙齒海豚肌肉中的錳濃度則均與體長呈負相關。這五種重金屬濃度在這四種鯨豚中有不同的蓄積情形,推測可能與其生理需求有關,以及不同的年齡對於元素的需求也有所不同。與近年來其他海域相比,本研究發現臺灣周遭海域的海洋重金屬污染情況相對輕微,並未呈現出較高的趨勢。 |
Abstract |
This study collected four species of stranded cetaceans, including Kogia breviceps (pygmy sperm whale), Steno bredanensis (rough-toothed dolphin), Tursiops aduncus (Indo-Pacific bottlenose dolphin), and Tursiops truncatus (common bottlenose dolphin), from the water around Taiwan from 2003 to 2020. The samples were analyzed for the concentrations of iron, zinc, copper, manganese, and cadmium in these cetaceans' muscles, liver, kidneys, and lungs by flame and graphite furnace atomic absorption spectrometry. The study aimed to investigate the variations of heavy metal concentrations and tissue differences among the cetaceans, as well as their correlation with body length. Additionally, carbon (δ13C) and nitrogen (δ15N) isotope analysis was conducted on the muscles to explore differences in habitat and diet. Based on the carbon and nitrogen isotope results, it was found that K. breviceps and S. bredanensis primarily inhabit the continental shelf and deep-sea regions, and K. breviceps with a diet mainly consisting of deep-sea cephalopods. Regarding heavy metal concentrations, there were accumulation differences among the species. Fe concentrations in the muscle and kidney tissues of K. breviceps (613±189 and 880±277 mg/kg dry weight, respectively) were higher than the other three species, likely due to their diving capabilities and physiological differences, resulting in varied requirements and utilization of heavy metals. The study revealed that Fe, Zn, Cu, and Mn elements were primarily accumulated in the liver tissues of the four cetacean species, while Cd was found to accumulate in the kidney tissues. Furthermore, positive correlations were observed between Fe concentrations in the liver and kidney tissues of K. breviceps, as well as Cd concentrations in the muscle tissue. Conversely, negative correlations were observed between Zn concentrations in muscle tissue, Mn concentrations in kidney tissue of K. breviceps, and Mn concentrations in the muscle tissues of T. truncatus and S. bredanensis, respectively. The accumulation patterns of these five heavy metals varied among the four cetacean species, likely due to their physiological requirements and different age-related elemental demands. In comparison to other marine areas in recent years, the concentrations of heavy metals in the coastal waters of Taiwan did not show a higher pollution trend. |
目次 Table of Contents |
目錄 論文審定書……………………………………………………………..i 誌謝……………………………………………………………………..ii 中文摘要………………………………………………………………..iii 英文摘要………………………………………………………………..iv 目錄……………………………………………………………………..vi 圖目錄…………………………………………………………………..ix 表目錄…………………………………………………………………..xii 一、前言 1.1 臺灣周邊海域的鯨豚簡介……………………………………1 1.2 碳氮同位素與鯨豚生態………………………………………1 1.3 臺灣過去鯨豚重金屬組織累積之相關研究…………………2 1.4 本研究四種鯨豚之介紹………………………………………6 1.5 研究目的………………………………………………………8 二、材料與方法 2.1 樣品來源………………………………………………………10 2.2 樣品前處理……………………………………………………10 2.3 重金屬分析方法………………………………………………11 2.3.1 元素分析用樣品的消化與定容……………………….11 2.3.2 品保(QA)及品管(QC)…………………………………12 2.3.3 重金屬定量分析……………………………………….14 2.4 碳氮同位素測定………………………………………………15 2.4.1 油脂萃取……………………………………………….15 2.4.2 待測樣品前處理……………………………………….16 2.4.3 碳氮同位素分析……………………………………….17 2.5 統計分析………………………………………………………17 三、結果 3.1 標準樣品分析結果……………………………………………19 3.2 肌肉中碳氮同位素……………………………………………19 3.2.1 種別差異……………………………………………….19 3.2.2 與體長的相關性……………………………………….20 3.3 重金屬濃度在各組織中的種別差異…………………………20 3.3.1 鐵……………………………………………………….20 3.3.2 鋅……………………………………………………….21 3.3.3 銅……………………………………………………….22 3.3.4 錳……………………………………………………….22 3.3.5 鎘……………………………………………………….23 3.4 重金屬濃度在同物種中的組織差異…………………………23 3.4.1 小抹香鯨……………………………………………….24 3.4.2 瓶鼻海豚……………………………………………….24 3.5 組織重金屬濃度與體長之相關性……………………………25 3.6 組織重金屬濃度與碳氮同位素之關係………………………25 3.7 各組織間重金屬之相關性……………………………………27 3.8 集群分析(Cluster)以及多元尺度分析(MDS)………………..28 四、討論 4.1 四種鯨豚的棲地與食階差異…………………………………29 4.2 五種重金屬濃度在種別間的蓄積差異………………………32 4.3 五種重金屬濃度在組織間的蓄積差異………………………33 4.4 五種重金屬濃度與鯨豚體長間之相關性……………………34 4.5 鯨豚各組織中五種重金屬濃度之關係………………………35 4.6 臺灣海域四種鯨豚組織五種重金屬與世界文獻之比較……36 五、參考文獻………………………………………………………38 六、圖………………………………………………………………52 七、表………………………………………………………………75 圖目錄 圖1. 本研究採集鯨豚樣本之擱淺地點………………………………50 圖2. 小抹香鯨(Kb)、糙齒海豚(Sb)、印太瓶鼻海豚(Ta)及瓶鼻海豚 (Tt)之碳氮同位素………………………………………………..51 圖3. 小抹香鯨(Kb)、糙齒海豚(Sb)、印太瓶鼻海豚(Ta)及瓶鼻海豚 (Tt)之碳氮同位素與體長的相關性……………………………..52 圖4. 鐵濃度在小抹香鯨(Kb)、糙齒海豚(Sb)、印太瓶鼻海豚(Ta)及 瓶鼻海豚(Tt)組織中的種別差異………………………………..53 圖5. 鋅濃度在小抹香鯨(Kb)、糙齒海豚(Sb)、印太瓶鼻海豚(Ta)及 瓶鼻海豚(Tt)組織中的種別差異………………………………..54 圖6. 銅濃度在小抹香鯨(Kb)、糙齒海豚(Sb)、印太瓶鼻海豚(Ta)及 瓶鼻海豚(Tt)組織中的種別差異………………………………..55 圖7. 錳濃度在小抹香鯨(Kb)、糙齒海豚(Sb)、印太瓶鼻海豚(Ta)及 瓶鼻海豚(Tt)組織中的種別差異………………………………..56 圖8. 鎘濃度在小抹香鯨(Kb)、糙齒海豚(Sb)、印太瓶鼻海豚(Ta)及 瓶鼻海豚(Tt)組織中的種別差異………………………………..57 圖9. 重金屬蓄積在小抹香鯨(Kb)體內的組織差異………………….58 圖10. 重金屬蓄積在瓶鼻海豚(Tt)體內的組織差異…………………59 圖11. 小抹香鯨(Kb)、糙齒海豚(Sb)、印太瓶鼻海豚(Ta)及瓶鼻海豚 (Tt)組織中鐵濃度與體長之相關性……………………………60 圖12. 小抹香鯨(Kb)、糙齒海豚(Sb)、印太瓶鼻海豚(Ta)及瓶鼻海豚 (Tt)組織中鋅濃度與體長之相關性……………………………61 圖13. 小抹香鯨(Kb)、糙齒海豚(Sb)、印太瓶鼻海豚(Ta)及瓶鼻海豚 (Tt)組織中銅濃度與體長之相關性……………………………62 圖14. 小抹香鯨(Kb)、糙齒海豚(Sb)、印太瓶鼻海豚(Ta)及瓶鼻海豚 (Tt)組織中錳濃度與體長之相關性……………………………63 圖15. 小抹香鯨(Kb)、糙齒海豚(Sb)、印太瓶鼻海豚(Ta)及瓶鼻海豚 (Tt)組織中鎘濃度與體長之相關性……………………………64 圖16. 小抹香鯨(Kb)、糙齒海豚(Sb)、印太瓶鼻海豚(Ta)及瓶鼻海豚 (Tt)組織中重金屬濃度與15N 之相關性……………………...65 圖17. 小抹香鯨(Kb)、糙齒海豚(Sb)、印太瓶鼻海豚(Ta)及瓶鼻海豚 (Tt)組織中重金屬濃度與15N 之相關性……………………...66 圖18. 小抹香鯨(Kb)、糙齒海豚(Sb)、印太瓶鼻海豚(Ta)及瓶鼻海豚 (Tt)組織中重金屬濃度與13C 之相關性……………………...67 圖19. 小抹香鯨(Kb)、糙齒海豚(Sb)、印太瓶鼻海豚(Ta)及瓶鼻海豚 (Tt)組織中重金屬濃度與15N 之相關性……………………...68 圖20. 四種鯨豚個體之肌肉、肝臟及腎臟組織中鐵、鋅、銅、錳及 鎘濃度,以相似度分析(Similarity)及集群分析(Cluster)做分群………………………………………………………………..69 圖21. 四種鯨豚其肌肉組織中鐵、鋅、銅、錳及鎘濃度之多元尺度 分析(MDS)……………………………………………………...70 圖22. 四種鯨豚其肝臟組織中鐵、鋅、銅、錳及鎘濃度之多元尺度 分析(MDS)……………………………………………………...71 圖23. 四種鯨豚其腎臟組織中鐵、鋅、銅、錳及鎘濃度之多元尺度 分析(MDS)……………………………………………………...72 表目錄 表1. 臺灣過去對鯨豚組織重金屬的相關研究回顧…………………73 表2. 臺灣過去研究之鯨豚物種與隻數………………………………74 表3. 本研究使用西元2003~2020 年間台灣地區鯨豚樣本之清單....75 表4. 2003~2020 年鯨豚各組織樣本統計表………………………...76 表5. 各元素之國際標準品測值及本研究之回收率(單位為 mg/kg dry wt.)………………………………………………………………..77 表6. 四種鯨豚其肌肉、肝臟、腎臟及肺臟組織中鐵、鋅、銅、錳及 鎘濃度(中位數及範圍,單位為 mg/kg dry wt.)……………….78 表7. 四種鯨豚其肌肉、肝臟、腎臟及肺臟組織中鐵、鋅、銅、錳及 鎘的平均濃度(平均、標準差及範圍,單位為 mg/kg dry wt.)………………………………………………………………..79 表8. 小抹香鯨的肌肉、肝臟及腎臟中鐵、鋅、銅、錳及鎘濃度之相 關性(Spearman's Rank Correlation Coefficient)…………………80 表9. 海豚科(印太瓶鼻海豚、瓶鼻海豚、糙齒海豚)的肌肉、肝臟及 腎臟中鐵、鋅、銅、錳及鎘濃度之相關性(Spearman's Rank Correlation Coefficient)…………………………………………..81 表10. 本研究與世界各海域研究之鯨豚肌肉、肝臟、腎臟及肺臟內 鐵、鋅、銅、錳與鎘濃度……………………………………..82 |
參考文獻 References |
Amir OA., Berggren P., Ndaro SG., Jiddawi NS. 2005. Feeding ecology of the Indo-Pacific bottlenose dolphin (Tursiops aduncus) incidentally caught in the gillnet fisheries off Zanzibar, Tanzania. Estuar Coast Shelf Sci 63(3): 429-437. Baird RW., Webster DL., Aschettino JM., Schorr GS., McSweeney DJ. 2013. Odontocete cetaceans around the main Hawaiian Islands: Habitat use and relative abundance from small-boat sighting surveys. Aquat Mamm 39(3). Baird RW., Webster DL., Mahaffy SD., McSweeney DJ., Schorr GS., Ligon AD. 2008. Site fidelity and association patterns in a deep‐water dolphin: Rough‐toothed dolphins (Steno bredanensis) in the Hawaiian Archipelago. Mar Mamm Sci 24(3): 535-553. Baumgartner MF., Mullin KD., May LN., Leming TD. 2001. Cetacean habitats in the northern Gulf of Mexico. Fish Bull 99(2): 219-219. Beatson E. 2007. The diet of pygmy sperm whales, Kogia breviceps, stranded in New Zealand: implications for conservation. Rev Fish Biol Fish 17:295-303. Beck KM., Fair P., McFee W., Wolf D. 1997. Heavy metals in livers of bottlenose dolphins stranded along the South Carolina coast. Mar Pollut Bull 34(9):734-739. Bellante A., Sprovieri M., Buscaino G., Manta DS., Buffa G., Di Stefano V., Mazzola S. 2009. Trace elements and vanadium in tissues and organs of five species of cetaceans from Italian coasts. Chem Ecol 25(5):311-323. Blanco C., Salomón O., Raga JA. 2001. Diet of the bottlenose dolphin (Tursiops truncatus) in the western Mediterranean Sea. J Mar Biolog Assoc U.K. 81(6): 1053-1058. Bloodworth BE., Odell DK. 2008. Kogia breviceps (Cetacea: Kogiidae). Mamm Species 819:1-12. Borrell A., Gazo M., Aguilar A., Raga JA., Degollada E., Gozalbes P., García-Vernet R. 2021. Niche partitioning amongst northwestern Mediterranean cetaceans using stable isotopes. Prog Oceanogr 193: 102559. Bowman AB., Kwakye GF., Hernández EH., Aschner M. 2011. Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol 25(4): 191-203. Bustamante P., Garrigue C., Breau L., Caurant F., Dabin W., Greaves J., Dodemont R. 2003. Trace elements in two odontocete species (Kogia breviceps and Globicephala macrorhynchus) stranded in New Caledonia (South Pacific). Environ Pollut 124:263-271. Burns JM., Trumble SJ., Castellini MA., Testa JW. 1998. The diet of Weddell seals in McMurdo Sound, Antarctica as determined from scat collections and stable isotope analysis. Polar Biol 19: 272-282. Cabana G., Rasmussen JB. 1996. Comparison of aquatic food chains using nitrogen isotopes. Proc Natl Acad Sci 93(20): 10844-10847. Campbell WB. 2001. A note on the release and tracking of a rehabilitated pygmy sperm whale (Kogia breviceps). J Cetacean Res Manag 3: 87-94. Capelli R., Das K., De Pellegrini R., Drava G., Lepoint G., Miglio C., Poggi R. 2008. Distribution of trace elements in organs of six species of cetaceans from the Ligurian Sea (Mediterranean), and the relationship with stable carbon and nitrogen ratios. Sci Total Environ 390(2-3): 569-578. Cardona L., Revelles M., Sales M., Aguilar A., Borrell A. 2007. Meadows of the seagrass Posidonia oceanica are a significant source of organic matter for adjoining ecosystems. Mar Ecol Prog Ser 335: 123-131. Cartwright R., Newton C., West KM., Rice J., Niemeyer M., Burek K., Marcial-Hernandez L. 2016. Tracking the development of muscular myoglobin stores in mysticete calves. PLoS One 11(1): e0145893. Carvalho ML., Pereira RA., Brito J. 2002. Heavy metals in soft tissues of Tursiops truncatus and Delphinus delphis from west Atlantic Ocean by X-ray spectrometry. Sci Total Environ 292(3):247-254. Chase JM., Leibold MA., 2003. Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago, IL. Chen MH., Shih CC., Chou CL., Chou LS. 2002. Mercury, organic-mercury and selenium in small cetaceans in Taiwanese waters. Mar Pollut Bull 45:237-245. Chen MH., Zhuang MF., Chou LS., Liu JY., Shih CC., Chen CY. 2017. Tissue concentrations of four Taiwanese toothed cetaceans indicating the silver and cadmium pollution in the western Pacific Ocean. Mar Pollut Bull 124(2):993-1000. Chen MH., Lin YT., Lai CC., Chou LS., Chen CY. 2020. Tissue concentrations of Fe, Zn, Cu and Mn of four Taiwanese toothed cetaceans. Mar Pollut Bull 158:111094. Chou LS. 2002. Progress report of cetacean research and conservation in Taiwan. Fish Sci 68(sup1):248-251. Cockcroft VG., Ross GJB. 1990. Food and feeding of the Indian Ocean bottlenose dolphin off southern Natal. South Africa. S. Leatherwood, R.R. Reeves (Eds.), The bottlenose dolphin, Academic Press, San Diego 295-308. Davis RW., Fargion GS., May N., Leming TD., Baumgartner M., Evans W E., Mullin K. 1998. Physical habitat of cetaceans along the continental slope in the northcentral and western Gulf of Mexico. Mar Mamm Sci 14(3): 490-507. De Carvalho CEV., Di Beneditto APM., Souza CMM., Ramos RM., Rezende CE. 2008. Heavy metal distribution in two cetacean species from Rio de Janeiro State, south-eastern Brazil. J Mar Biolog Assoc U.K. 88(6): 1117-1120. De Moura JF., Hauser-Davis RA., Lemos L., Emin-Lima R., Siciliano S. 2014. Guiana dolphins (Sotalia guianensis) as marine ecosystem sentinels: ecotoxicology and emerging diseases. Rev Environ Contam Toxicol 228: 1-29. Decataldo A., Di Leo A., Giandomenico S., Cardellicchio N. 2004. Association of metals (mercury, cadmium and zinc) with metallothionein-like proteins in storage organs of stranded dolphins from the Mediterranean sea (Southern Italy). J Environ Monit 6(4): 361-367. Delgado-Suarez I., Lozano-Bilbao E., Hardisson A., Paz S., Gutiérrez ÁJ. 2023. Metal and trace element concentrations in cetaceans worldwide: A review. Mar Pollut Bull 192: 115010. DeNiro MJ., Epstein S. 1977. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197: 261-263. Endo T., Haraguchi K., Sakata M. 2002. Mercury and selenium concentrations in the internal organs of toothed whales and dolphins marketed for human consumption in Japan. Sci Total Environ 300(1-3): 15-22. Flores, P.D.C. and Ximinez, A. 1997. Observations on the rough-toothed dolphin Steno bredanensis off Santa Catarina Island, southern Brazilian coast. Biotemas 10:71-79. Focken U., Becker K. 1998. Metabolic fractionation of stable carbon isotopes: implications of different proximate compositions for studies of the aquatic food webs using δ13C data. Oecologia 115: 337-343. Friberg LT., Elinder GG., Kjellstrom T., Nordberg GF. (Eds.). 2019. Cadmium and health: A toxicological and epidemiological appraisal: Volume 2: Effects and response (Vol. 1). CRC press. Frodello JP., Marchand B. 2001. Cadmium, copper, lead, and zinc in five toothed whale species of the Mediterranean Sea. Int J Toxicol 20(6):339-343. Fry B. 2006. Stable isotope ecology (Vol. 521, p. 318). New York: Springer. Gao X., Chen CTA. 2012. Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res 46(6): 1901-1911. Gannier A., West KL. 2005. Distribution of the rough-toothed dolphin (Steno bredanensis) around the Windward Islands (French Polynesia). Pac Sci 59:17-24. GBIF.org. 2022a. Kogia breviceps (Blainville, 1838) in GBIF Secretariat (2022). GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.org on 2023-08-10. GBIF.org. 2022b. Tursiops aduncus (Ehrenberg, 1833) in GBIF Secretariat (2022). GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.org on 2023-08-10. GBIF.org. 2022c. Tursiops truncatus (Montagu, 1821) in GBIF Secretariat (2022). GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.org on 2023-08-10. Hale PT., Barreto AS., Ross GJB. 2000. Comparative morphology and distribution of the aduncus and truncatus forms of bottlenose dolphin Tursiops in the Indian and Western Pacific Oceans. Aquat Mamm 26.2:101-110. Handley CO. 1966. A synopsis of the genus Kogia (pygmy sperm whales) in Norris, KS (ed) Whales, dolphins, and porpoises. U. Hansen SL., Spears JW., Lloyd KE., Whisnant CS. 2006. Growth, reproductive performance, and manganese status of heifers fed varying concentrations of manganese. J Anim Sci 84(12): 3375-3380. Helbo S., Fago A. 2012. Functional properties of myoglobins from five whale species with different diving capacities. J Exp Biol 215(19): 3403-3410. Hobson KA., Schell DM. 1998. Stable carbon and nitrogen isotope patterns in baleen from eastern Arctic bowhead whales (Balaena mysticetus). Can J Fish Aquat Sci 55(12): 2601-2607. Hobson KA., Sease JL. 1998. Stable isotope analyses of tooth annuli reveal temporal dietary records: an example using Steller sea lions. Mar Mamm Sci 14(1): 116-129. Hobson KA., Sease JL., Merrick RL., Piatt JF. 1997. Investigating trophic relationships of pinnipeds in Alaska and Washington using stable isotope ratios of nitrogen and carbon. Mar Mamm Sci 13(1): 114-132. Honda K., Tatsukawa R., Itano K., Miyazaki N., Fujiyama T. 1983. Heavy metal concentrations in muscle, liver and kidney tissue of striped dolphin, Stenella coeruleoalba, and their variations with body length, weight, age and sex. Agric Biol Chem 47(6): 1219-1228. Ingram SN., Rogan E. 2002. Identifying critical areas and habitat preferences of bottlenose dolphins Tursiops truncatus. Mar Ecol Prog Ser 244:247-255. John YW., Yang SC. 2009. Indo-Pacific bottlenose dolphin: Tursiops aduncus. Encyclopedia of marine mammals pp. 602-608. Johri N., Jacquillet G., Unwin R. 2010. Heavy metal poisoning: the effects of cadmium on the kidney. Biometals 23: 783-792. Kalay M., Ay Ö., Canli M. 1999. Heavy metal concentrations in fish tissues from the Northeast Mediterranean Sea. Bull Environ Contam Toxicol 63(5):673-681. Kalra A., Yetiskul E., Wehrle CJ., Tuma F. 2018. Physiology, liver. Kelly JF. 2000. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can J Zool 78(1): 1-27. Kiszka J., Baird R., Braulik G. 2019. Steno bredanensis. IUCN Red List Threat. Species. Knoff A., Hohn A., Macko S. 2008. Ontogenetic diet changes in bottlenose dolphins (Tursiops truncatus) reflected through stable isotopes. Mar Mamm Sci 24(1): 128-137. Koeman JH., Peeters WHM., Koudstaal-Hol CHM., Tjioe PS., De Goeij JJM. 1973. Mercury-selenium correlations in marine mammals. Nature 245: 385-386. Law RJ., Jones BR., Baker JR., Kennedy S., Milne R., Morris RJ. 1992. Trace metals in the livers of marine mammals from the Welsh coast and the Irish Sea. Mar Pollut Bull 24(6):296-304. Leatherwood S., Reeves RR. 1983. The Sierra Club handbook of whales and dolphins. Sierra Club Books, San Francisco. Lieu PT., Heiskala M., Peterson PA., Yang Y. 2001. The roles of iron in health and disease. Mol Aspects Med 22(1-2): 1-87. Liu JY., Chou LS., Chen MH. 2015. Investigation of trophic level and niche partitioning of 7 cetacean species by stable isotopes, and cadmium and arsenic tissue concentrations in the western Pacific Ocean. Mar Pollut Bull 93(1-2):270-277. Lodi L., Hetzel B. 1999. Rough-toothed dolphin, Steno bredanensis, feeding behaviors in Ilha Grande Bay. Biociências 7: 29-42. Logan JM., Jardine TD., Miller TJ., Bunn SE., Cunjak RA., Lutcavage ME. 2008. Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol 77:838-846. Lozano-Bilbao E., Alcázar-Treviño J., Alduán M., Lozano G., Hardisson A., Rubio C., Gutiérrez ÁJ. 2021. Metal content in stranded pelagic vs deep-diving cetaceans in the Canary Islands. Chemosphere 285: 131441. Mackey EA., Oflaz RD., Epstein MS., Buehler B., Porter BJ., Rowles T., Wise SA., Becker PR. 2003. Elemental Composition of Liver and Kidney Tissues of Rough-Toothed Dolphins (Steno bredanensis). Arch Environ Contam Toxicol 44:523-532. Maigret J. 1994. Steno bredanensis (Lesson, 1828)–Rauhzahndelphin (auch Langschnauzendelphin). Handbuch der Säugetiere Europas, 6: 269-280. Mapunda EC., Othman OC., Akwilapo LD., Bouwman H., Mwevura H. 2017. Concentrations of metallic elements in kidney, liver, and lung tissue of IndoPacific bottlenose dolphin Tursiops aduncus from coastal waters of Zanzibar, Tanzania. Mar Pollut Bull 122:483-487. Marcovecchio JE., Moreno VJ., Bastida RO., Gerpe MS., Rodríguez DH. 1990. Tissue distribution of heavy metals in small cetaceans from the Southwestern Atlantic Ocean. Mar Pollut Bull 21(6):299-304. Martins HR., Clarke MR., Reiner F., Santos RS. 1985. A pygmy sperm whale, Kogia breviceps (Blainville, 1838)(Cetacea: Odontoceti) stranded on Faial Island, Azores, with notes on cephalopod beaks in stomach. Arquipélago-Série Ciências da Natureza, 6:63-70. McAlpine DF. 2018. Pygmy and Dwarf Sperm Whales: Kogia breviceps and K. sima. Encyclopedia of Marine Mammals (Third Edition). p. 786. McMahon KW., Hamady LL., Thorrold SR. 2013. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol Oceanogr 58(2): 697-714. Méndez-Fernandez P., Webster L., Chouvelon T., Bustamante P., Ferreira M., González AF., Caurant F. 2014. An assessment of contaminant concentrations in toothed whale species of the NW Iberian Peninsula: Part II. Trace element concentrations. Sci Total Environ 484: 206-217. Meredith RW., Janečka JE., Gatesy J., Ryder OA., Fisher CA., Teeling EC., Murphy WJ. 2011. Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 334(6055): 521-524. Monteiro F., Lemos LS., de Moura JF., Rocha RCC., Moreira I., Di Beneditto AP., Hauser-Davis RA. 2019. Subcellular metal distributions and metallothionein associations in rough-toothed dolphins (Steno bredanensis) from Southeastern Brazil. Mar Pollut Bull 146: 263-273. Monteiro SS., Torres J., Ferreira M., Marçalo A., Nicolau L., Vingada JV., Eira C. 2016. Ecological variables influencing trace element concentrations in bottlenose dolphins (Tursiops truncatus, Montagu 1821) stranded in continental Portugal. Sci Total Environ 544: 837-844. Neathery MW., Miller WJ. 1975. Metabolism and toxicity of cadmium, mercury, and lead in animals: a review. J Dairy Sci 58(12): 1767-1781. Newsome SD., Clementz MT., Koch PL. 2010. Using stable isotope biogeochemistry to study marine mammal ecology. Mar Mamm Sci 26(3): 509-572. Newsome SD., Koch PL., Etnier MA., Aurioles‐Gamboa D. 2006. Using carbon and nitrogen isotope values to investigate maternal strategies in northeast Pacific otariids. Mar Mamm Sci 22(3): 556-572. Noren SR., Williams TM., Pabst DA., Mclellan WA., Dearolf JL. 2001. The development of diving in marine endotherms: preparing the skeletal muscles of dolphins, penguins, and seals for activity during submergence. J Comp Physiol 171: 127-134. Nriagu J. 2007. Zinc toxicity in humans. School of Public Health, University of Michigan:1-7. Orsi Relini L., Cappello M., Poggi R. 1994. The stomach content of some bottlenose dolphins (Tursiops truncatus) from the Ligurian Sea. Eur Res Cetaceans 8:192-5. Peterson BJ., Fry B. 1987. Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293-320. Peyssonnaux C., Nizet V., Johnson RS. 2008. Role of the hypoxia inducible factors HIF in iron metabolism. Cell cycle 7(1):28-32. Pianka ER., 1974. Niche overlap and diffuse competition. PNAS 71(5): 2141–2145. Pitman RL., Stinchcomb C. 2002. Rough-toothed dolphins (Steno bredanensis) as predators of mahimahi (Coryphaena hippurus). Pac Sci 56(4): 447-450. Polischuk SC., Hobson KA., Ramsay MA. 2001. Use of stable-carbon and-nitrogen isotopes to assess weaning and fasting in female polar bears and their cubs. Can J Zool 79(3): 499-511. Rice DW. 1998. Marine mammals of the world: systematics and distribution. Society for Marine Mammalogy. Special Publication. (4). Ritter F. 2002. Behavioural observations of rough-toothed dolphins (Steno bredanensis) off La Gomera, Canary Islands (1995-2000), with special reference to their interactions with humans. Aquat Mamm, 28(1):46-59. Robinson CD., Webster L., Martínez-Gómez C., Burgeot T., Gubbins MJ., Thain JE., Hylland K. 2017. Assessment of contaminant concentrations in sediments, fish and mussels sampled from the North Atlantic and European regional seas within the ICON project. Mar Environ Res 124: 21-31. Rubenstein DR., Hobson KA. 2004. From birds to butterflies: animal movement patterns and stable isotopes. Trends Ecol Evol 19(5): 256-263. Santos MB., Fernandez R., López A., Martínez JA., Pierce GJ. 2007. Variability in the diet of bottlenose dolphin, Tursiops truncatus, in Galician waters, north-western Spain, 1990–2005. J Mar Biolog Assoc U.K. 87(1): 231-241. Seixas TG., Kehrig HA., Di Beneditto APM., Souza CM., Malm O., Moreira I. 2009. Essential (Se, Cu) and non-essential (Ag, Hg, Cd) elements: what are their relationships in liver of Sotalia guianensis (Cetacea, Delphinidae)?. Organohalogen Compd 69: 1341-1345. Sekiguchi K., Klages NT., Best PB. 1992. Comparative analysis of the diets of smaller odontocete cetaceans along the coast of southern Africa. S Afr J Mar Sci 12(1): 843-861. Shirihai H., Jarrett B. 2006. Whales Dolphins and Other Marine Mammals of the World. p.159-161. Shoham-Frider E., Kress N., Wynne D., Scheinin A., Roditi-Elsar M., Kerem D. 2009. Persistent organochlorine pollutants and heavy metals in tissues of common bottlenose dolphin (Tursiops truncatus) from the Levantine Basin of the Eastern Mediterranean. Chemosphere 77(5):621-627. Storelli MM., Zizzo N., Marcotrigiano GO. 1999. Heavy metals and methylmercury in tissues of Risso's dolphin (Grampus griseus) and Cuvier's beaked whale (Ziphius cavirostris) stranded in Italy (South Adriatic Sea). Bull Environ Contam Toxicol 63(6): 703-710. Sujitha SB., Jonathan MP., Aurioles-Gamboa D., Campos Villegas LE., Bohórquez-Herrera J., Hernández-Camacho CJ. 2019. Trace elements in marine organisms of Magdalena Bay, Pacific Coast of Mexico: Bioaccumulation in a pristine environment. Environ Geochem Health 41: 1075-1089. Tintoré J., Gomis D., Alonso S., Wang DP. 1988. A theoretical study of large sea level oscillations in the Western Mediterranean. J Geophys Res Oceans 93(C9): 10797-10803. Vargas-Fonseca OA., Yates P., Kirkman SP., Pistorius PA., Moore DM., Natoli A., Cockcroft V., Hoelzel AR. 2021. Population structure associated with bioregion and seasonal prey distribution for Indo-Pacific bottlenose dolphins (Tursiops aduncus) in South Africa. Mol Ecol 00:1-18. doi: 10.1111/mec.16086. Wagemann R., Muir DC. 1984. Concentrations of heavy metals and organochlorines in marine mammals of northern waters: overview and evaluation. Canada: Western Region, Department of Fisheries and Oceans. Watkins WA., Tyack P., Moore KE., Notarbartolo-di-Sciara G. 1987. Steno bredanensis in the Mediterranean Sea. Mar Mamm Sci 3(1): 78-82. Wang MC., Walker WA., Shao KT., Chou LS. 2002. Comparative Analysis of the Diets of Pygmy Sperm Whales and Dwarf Sperm Whales in Taiwanese Waters. Acta Zoologica Taiwanica 13(2): 53-62. Wells RS., Scott MD. 2009. Common bottlenose dolphin: Tursiops truncatus. Encyclopedia of marine mammals pp. 249-255. West KL., Mead JG., White W. 2011. Steno bredanensis. Mamm Species 43:177-189. Wood CM., Van Vleet ES. 1996. Copper, cadmium and zinc in liver, kidney and muscle tissues of bottlenose dolphins (Tursiops truncatus) stranded in Florida. Mar Pollut Bull 32(12):886-889. Wright TJ., Davis RW. 2015. Myoglobin oxygen affinity in aquatic and terrestrial birds and mammals. J Exp Biol 218(14): 2180-2189. Wursig B., Perrin WF. (Eds.). 2009. Encyclopedia of marine mammals. Academic Press. Zhou JL., Salvador SM., Liu YP., Sequeira M. 2001. Heavy metals in the tissues of common dolphins (Delphinus delphis) stranded on the Portuguese coast. Sci Total Environ 273(1-3): 61-76. 王愈超,2003。墾丁南灣及其附近海域印太洋瓶鼻海豚(Tursiops aduncus)分佈、移動及豐度之保育研究。內政部營建署墾丁國家公園管理處委託研究報告。 石界智,2001。台灣附近海域鯨豚體內重金屬蓄積之研究。國立中山大學海洋資源研究所碩士論文。 古詩涵,2013。探討臺灣賞鯨活動對鯨豚衝擊認知之研究。中國文化大學觀光事業學系碩士論文。 李培芬等,2004。台灣的自然資源與生態資料庫-生物多樣性。 周蓮香,2007。台灣鯨豚保育的歷程。生態台灣季刊,15,14-20頁。 林于庭,2019。台灣海域四種齒鯨組織中鐵、錳、鋅及銅濃度之研究。國立中山大學海洋科學系碩士論文。 海保署(111/09/16) - 海洋保育類野生動物-臺灣鯨豚保育現況 - 海洋委員會海洋保育署全球資訊網https://www.oca.gov.tw/ch/home.jsp?id=290&parentpath=0,6&mcustomize=ocamaritime_view.jsp&dataserno=202209160001 陳淑貞,1997。熱帶斑海豚與小虎鯨體內有機錫之累積之初步研究。國立中山大學海洋生物研究所碩士論文。 國立臺灣海洋大學,2019。108 年度臺灣周邊鯨豚族群調查計畫成果報告書。 莊名豐,2016。台灣海域四種鯨豚之四種組織中銀、鎘與硒之生物蓄積研究。國立中山大學海洋科學系碩士論文。 劉璟儀,2014。台灣海域鯨豚重金屬濃度及碳氮同位素之研究。國立中山大學海洋生物科技暨資源學系碩士論文。 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2028-08-10 校外 Off-campus:開放下載的時間 available 2028-08-10 您的 IP(校外) 位址是 3.14.145.167 現在時間是 2024-11-22 論文校外開放下載的時間是 2028-08-10 Your IP address is 3.14.145.167 The current date is 2024-11-22 This thesis will be available to you on 2028-08-10. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2028-08-10 |
QR Code |