論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-08-12
校外 Off-campus:開放下載的時間 available 2026-08-12
論文名稱 Title |
具寄生元件及漸進式結構之中長距離車用雷達封裝天線設計 Design of Middle to Long Range Automotive Radar Antenna in Package with Tapering Structure and Parasitic Elements |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
63 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-04-06 |
繳交日期 Date of Submission |
2023-08-12 |
關鍵字 Keywords |
車用雷達、封裝天線、天線陣列、旁波瓣、寬頻、電磁能隙 automotive radar, AiP, antenna array, side lobe, broadband, EBG |
||
統計 Statistics |
本論文已被瀏覽 125 次,被下載 0 次 The thesis/dissertation has been browsed 125 times, has been downloaded 0 times. |
中文摘要 |
近幾年來,車用輔助系統蓬勃發展,主動車距調節定速(ACC)已成為常見的車用電子輔助,傳統的車用雷達中心頻率為24 GHz,然而隨著處理資訊量上升以及高解析度的趨勢,逐漸不符需求,因此現階段主要使用76-81 GHz頻帶,憑藉著高頻寬、低干擾的優勢,得以滿足現今車用雷達的需求,逐漸成為主流。 目前ACC系統的天線設計在PCB上為主,其天線與射頻晶片需保持一段距離來避免輻射彼此間的干擾,然而這樣的電路佈局會增加整體系統面積,且成本難以降低,若能整合天線封裝(AiP)技術,則可以大幅縮小面積,達到小型化與降低成本的優勢。 本論文提出串饋式封裝貼片天線,工作頻率為77 GHz,設計應用於長距離車用雷達系統,首先以1x6串饋天線陣列為基礎,以漸進式貼片結構(Tapering Patch)、嵌入式饋入(Inset Feeding)控制、調整天線的電流分布,集中波束,達到更佳輻射場型,並加上寄生貼片,透過耦合提高增益,最後以電磁能隙(EBG)提升隔離度,降低天線之間的相互干擾,最終延伸為4x6天線陣列,單一天線可以達到較高的增益,增益大於12 dBi,旁波瓣低於-16 dB,且頻寬約7%,涵蓋整個76 GHz至81 GHz車用雷達頻段。 |
Abstract |
In recent years, advanced driver assistance systems (ADAS) have been developed vigorously. Adaptive Cruise Control (ACC) systems have become a common vehicle electronic assistance system. The traditional vehicle radar operated at 24 GHz. However, with the increase in the amount of processing information and high-resolution., the 76-81 GHz frequency band is mainly used for automotive radar antenna nowadays. With the advantages of broad bandwidth and lower interference, it can meet the demand of automotive radar and become the main design. The antenna design of the ACC system is mainly based on the PCB, and the antenna and the RF chip need to keep a certain distance to avoid radiation interference between each other. However, such a circuit layout will increase the module area, and the cost is difficult to reduce. Using AIP technology, the area can be greatly reduced and the module can be minimized to achieve low-cost. This thesis proposed a series-fed packaged patch antenna which operates at 77 GHz. Inset feeding and tapering patch are used to control the current distribution on patches and make the main beam more concentrated to get a better radiation pattern. Adding parasitic patches can increase coupling and achieve higher antenna gain. Then, the electromagnetic energy gap (EBG) is used to improve the isolation and reduce the mutual interference between antennas. In final step, the antenna extended to 4x6 antenna array whose bandwidth is about 7%, covering the entire 76 GHz to 81 GHz automotive radar frequency band. |
目次 Table of Contents |
論文審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 v 圖次 vii 表次 x 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 研究方法與目的 6 1.4 論文大綱 7 第二章 串饋天線 8 2.1 貼片天線簡介 8 2.2 串饋天線基本原理 9 2.3 77GHz串饋天線 11 第三章 77GHz串饋天線結構改良分析 15 3.1 低旁波瓣結構 15 3.2 電磁能隙元件 22 3.3 寄生貼片 27 第四章 疊層封裝結構 35 4.1 導入封裝製程設計 35 4.2 天線模擬與量測數據比較 40 第五章 車用雷達陣列 43 5.1 天線陣列理論 43 5.2 4x6天線陣列 44 第六章 結論 49 參考文獻 50 |
參考文獻 References |
[1] J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 845-860, March 2012. [2] L. Han and K. Wu, “24-GHz bandwidth-enhanced microstrip array printed on a single-layer electrically-thin substrate for automotive applications,” IEEE Trans. Antennas Propag., vol. 60, no. 5, pp. 2555-2558, May 2012. [3] H. Khalili, K. M. Aghdam, S. Alamdar and M. M. Taheri, “Low-cost series-fed microstrip antenna arrays with extremely low sidelobe levels,” IEEE Trans. Antennas Propag., vol. 66, no. 9, pp. 4606-4612, Sept. 2018. [4] Y. Kang, E. Noh and K. Kim, “Design of traveling-wave series-fed microstrip array with a low sidelobe level,” IEEE Antennas Wireless Propag Lett., vol. 19, no. 8, pp. 1395-1399, Aug. 2020. [5] G. B. Hoang, G. N. Van, L. T. Phuong, T. A. Vu and D. B. Gia, “Research, design and fabrication of 2.45 GHz microstrip patch antenna arrays for close-range wireless power transmission systems,” Progress In 2016 International Conference on Advanced Technologies for Communications (ATC), pp. 259-263, 2016. [6] A. Elfatimi, S. Bri and A. Saadi, “Comparison between techniques feeding for simple rectangular, circular and triangular patch antenna at 2.45 GHz,” Progress In 2018 4th International Conference on Optimization and Applications (ICOA), pp. 1-5, 2018. [7] Q. Tan, K. Chen, K. Fan and G. Luo, “A low-sidelobe series-fed microstrip patch antenna array for 77 GHz automotive radar applications,” Progress In 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), pp. 1-3, 2020. [8] J. Yin, Q. Wu, C. Yu, H. Wang and W. Hong, “Low-sidelobe-level series-fed microstrip antenna array of unequal interelement spacing,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1695-1698, 2017. [9] R. Chopra and G. Kumar, “Series-fed binomial microstrip arrays for extremely low sidelobe level,” IEEE Trans. Antennas Propag., vol. 67, no. 6, pp. 4275-4279, June 2019. [10] Y. Pang, L. Sun, Z. Li and R. Cao, “W band planar series-fed antenna array,” Progress In 2019 IEEE 5th International Conference on Computer and Communications (ICCC), pp. 676-679, 2019. [11] B. Li, Y. Qiu, J. Zhang, Z. Zhou and L. Sun, “W-band series-fed microstrip patch array with optimization of tapering profile,” Progress In 2020 9th Asia-Pacific Conference on Antennas and Propagation (APCAP), pp. 1-2, 2020. [12] Mamta, A. Mittal, P. Kumar, M. Mahto and A. Dwivedi, “Frequency reconfigurable microstrip rectangular patch antenna for wireless communication by inset feed technique,” Progress In 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), pp. 1-5, 2021. [13] F. Yang and Y. R. Samii, “Electromagnetic bandgap structures in antenna engineering,” 1st, Los Angeles, University of California, 2009. [14] L. Li, B. Li, H. X. Liu and C. H. Liang, “Locally resonant cavity cell model for electromagnetic band gap structures,” IEEE Trans. Antennas Propag., vol. 54, no. 1, pp. 90-100, Jan. 2006. [15] T. H. Jang, H. Y. Kim, I. S. Song, C. J. Lee, J. H. Lee and C. S. Park, “A wideband aperture efficient 60 GHz series-fed E-shaped patch antenna array with copolarized parasitic patches,” IEEE Trans. Antennas Propag., vol. 64, no. 12, pp. 5518-5521, Dec. 2016. [16] C. A. Yu, K. S. Chin and R. Lu, “24-GHz wide-beam patch antenna array laterally loaded with parasitic strips,” Progress In 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), pp. 1-3, 2019. [17] C. A. Balanis, “Antenna theory analysis and design,” 2nd, New York, John Wiley & Sons, 1997. [18] Z. J. Han, W. Song and X. Q. Sheng, “Gain enhancement and RCS reduction for patch antenna by using polarization-dependent EBG surface,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1631-1634, 2017. [19] J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 845-860, March 2012. [20] B. H. Ku, “A 77–81-GHz 16 element phased array receiver with ±50∘beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Techn. , vol. 62, no. 11, pp. 2823-2832, Nov. 2014. [21] B. Jian, J. Yuan and Q. Liu, “Procedure to Design a Series-fed Microstrip Patch Antenna Array for 77 GHz Automotive Radar,” 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), pp. 1-3, 2019. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2026-08-12 校外 Off-campus:開放下載的時間 available 2026-08-12 您的 IP(校外) 位址是 216.73.216.128 現在時間是 2025-06-12 論文校外開放下載的時間是 2026-08-12 Your IP address is 216.73.216.128 The current date is 2025-06-12 This thesis will be available to you on 2026-08-12. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2026-08-12 |
QR Code |