論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2028-08-16
校外 Off-campus:開放下載的時間 available 2028-08-16
論文名稱 Title |
臺灣西部沿岸改良式底拖網調查之頭足類多樣性與時空分布 Diversity and spatiotemporal distribution of cephalopods collected by modified beam trawl in coastal waters off western Taiwan |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
115 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-07-31 |
繳交日期 Date of Submission |
2023-08-16 |
關鍵字 Keywords |
環境適應、水深、虎斑烏賊、唇瓣烏賊、棲地利用 environmental adaptation, water depth, Sepia pharaonis, Sepia lycidas, habitat use |
||
統計 Statistics |
本論文已被瀏覽 65 次,被下載 0 次 The thesis/dissertation has been browsed 65 times, has been downloaded 0 times. |
中文摘要 |
本研究分析2007年6月至2021年11月間,以研究船「海研三號」和「新海研三號」的改良桁桿式蝦拖網採集於臺灣西部沿岸(苗栗至枋寮)的頭足類樣品,並同步蒐集水質資料。研究期間共捕獲頭足類6科13屬34分類物種(taxa)、1,545尾個體,前六優勢種分別為虎斑烏賊(Sepia pharaonis)、唇瓣烏賊(S. lycidas)、金烏賊(S. esculenta)、貝瑞氏四盤耳烏賊(Euprymna berryi)、日本暗耳烏賊(Inioteuthis japonica)和火槍魷(Loliolus beka),合計佔73.4%。臺灣西部沿海的頭足類群聚組成有顯著的地理分布差異(p<0.05),可區分為以七股–茄萣為界的「南群」和「北群」,和水深約100 m以深的「深水群」。這些頭足類分布的空間變化可能與溫鹽適應、海流和棲地偏好有關。雖然頭足類的種類組成並無明顯的年間變化,但優勢種的時序排序有差異。過去「北群」的最優勢種由火槍魷轉變為唇瓣烏賊,過去「南群」前四優勢種中的越南烏賊(S. vietnamica)已大量減少,不再名列本研究中南群的前四優勢種。此外,優勢種除了唇瓣烏賊外,其他種類在後期(2016–2021年)的豐度皆較前期(2007–2010年)為低。頭足類豐度的時間序列變化可能與海溫上升及漁業資源變動有關。優勢的虎斑烏賊、唇瓣烏賊和金烏賊有季節遷移的特性,亦顯示臺灣西部沿岸水深75 m以淺為烏賊適合的產卵場和育幼場。 |
Abstract |
The R/V Ocean Researcher III and the R/V New Ocean Researcher III were used to simultaneously investigate the cephalopod resources and measure hydrological and water quality data along the coastal waters off western Taiwan. During the study period, a total of 1,545 individuals were captured, representing 34 taxa from 13 genera and 6 families of cephalopods. The top six dominant species were Sepia pharaonis, S. lycidas, S. esculenta, Euprymna berryi, Inioteuthis japonica, and Loliolus beka, accounting for 73.4% of the total catch. There were significant geographic differences in the cephalopod assemblages along the western Taiwan (p < 0.05), including the "N group" and "S group" delineated by the Chiku–Jiading area, as well as the "deep-water group " divided by the water depth of 100 m. The spatial variation of cephalopods may be influenced by environmental adaptation, ocean currents, and habitat preferences. There were no significant annual variations in species composition; however, the ranking of dominant species changed over time. The most dominant species in the "N group" had transitioned from L. beka to S. lycidas. Among the top four dominant species in the "S group," the S. vietnamica had experienced a significant reduction and was no longer included in the list of the top four dominant species in the present study. Except for S. lycidas, the abundance of other dominant species was lower in the later period (2016–2021) compared to the earlier period (2007–2010). The temporal variations in cephalopod abundance may be related to global warming and changes in fishery resources. The seasonal migration characteristics of the dominant species, such as S. pharaonis, S. lycidas, and S. esculenta, indicate that the coastal waters off western Taiwan with the water depth shallower than 75 m serve as suitable spawning and nursery grounds for cephalopods. |
目次 Table of Contents |
目 錄 論文審定書………………………………………………………………………………i 誌謝…………………………………………………………………...…………………ii 摘要………………………………………………………………………….....…….....iii Abstract………………...…………………………………….....……..……...….…...…iv 目錄………………………………………………………………..……………….……v 圖次…………………………………………………………………………...…....….viii 表次……………………………………………………….………………….....……….x 附錄…………………………………………………………..……...………….………xi 第一章 前言………………………………………………..………………..………….1 1.1頭足類的多樣性…...……………………………………………………………1 1.2臺灣西部海域的水文環境………...……………………………………………1 1.3頭足類種類組成的時空變化………………………...……………...……….…2 1.3.1頭足類種類組成的空間差異………………………………………………2 1.3.1.1水深差異……………………………………………………………….2 1.3.1.2南北緯度差異………………………………………………………….3 1.3.2頭足類種類組成的十年差異………………………………………………3 1.4頭足類的分布與環境因子之關聯性………………………………...…………4 1.4.1鄰近海域研究………………………………………………………………4 1.4.2國內研究……………………………………………………………………5 1.5頭足類的遷移與棲地利用……...………………………………………………5 1.6研究目的………………………………………………………………………...6 第二章 材料與方法………………………………..………………………………...…7 2.1底拖調查與水質資料蒐集………………………...……………………………7 2.2樣本鑑定與生物學參數的量測…………………………...………..…………..7 2.3數據分析………………………………………….……...…………………..….8 2.3.1 α多樣性指數分析…………………………..……...………………………8 2.3.2群聚組成分析……………………………………....….………..………….8 2.3.2.1選擇群聚組成的固定因子………………………………...…………..8 2.3.2.2多變量分析………………………..………………………….......……9 2.3.3豐度的時間變化分析………………………………………...……...……10 2.3.4環境因子分析……………………………………………...…...…………10 2.3.5環境與生物因子分析……………………………………...…...…………10 2.3.6優勢種之生物學分析………………………………………...…..……….11 2.3.7數據分析軟體…………………………………………….…...…………..11 第三章 結果....…………………..………………………………....……….…………12 3.1臺灣西部沿岸之環境…………………………….………………...………….12 3.1.1底質環境……………………………………………….……...…………..12 3.1.2環境因子……………………..………………….…………...……………12 3.1.2.1水溫……………………………………...……………..….………….12 3.1.2.2鹽度……………………………………………………...……………13 3.1.2.3溶氧………………………………..……………………...…………..13 3.1.2.4葉綠素甲……………………………..…………………...…………..14 3.1.3環境因子之主成分分析…………………………………………………..14 3.2臺灣西部沿岸頭足類的物種多樣性……………………………...…………..14 3.3臺灣西部沿岸頭足類的生物量……………………………………………….15 3.4臺灣西部沿岸頭足類分布的水深變化……………………..……...…………15 3.5臺灣西部沿岸100 m以淺頭足類的空間分布……………………………….16 3.6臺灣西部沿岸頭足類豐度的年間變化…………………………...…………..17 3.7環境因子與頭足類分布之關聯性………………………………...…..………17 3.8優勢種與生活史策略……………………………….…………...…………….18 3.8.1虎斑烏賊(Sepia pharaonis)……………………….………...…………18 3.8.2唇瓣烏賊(Sepia lycidas)…………………………………...…………..19 3.8.3金烏賊(Sepia esculenta)………………………….....…………………19 第四章 討論………………………………..………………………………………….21 4.1臺灣西部沿岸底拖頭足類的多樣性……………………………...…………..21 4.2臺灣西部沿岸底拖頭足類分布的水深差異………………………………….22 4.3臺灣西部沿岸底拖頭足類分布的南北緯度差異…………………………….23 4.4臺灣西部沿岸底拖頭足類豐度的年間變化……………………...…………..24 4.5優勢種的生活史策略與棲地利用…………………………………………….25 4.5.1 虎斑烏賊(Sepia pharaonis)……………………….………………..25 4.5.2唇瓣烏賊(Sepia lycidas)………………………………...…………..26 4.5.3金烏賊(Sepia esculenta)……………………….…………...……….27 第五章 結論與建議………………………………………………….....……………..28 第六章 參考文獻…………………….…….…………..………….…...….…………..30 圖 次 圖1. 本研究於2007–2021年間,在臺灣西部沿岸海域的14個拖網測站地理位置圖。…………………………………………………………………………………….37 圖2. 2007–2021年間,本研究於各測站之底拖水深範圍盒形圖。……...…...…….38 圖3. 頭足類之不同類群的背外套膜長(Dorsal Mantle Length)量測方法示意圖。…………………………………………………………………………………….39 圖4. 2007–2021年間,臺灣西部沿岸各測站四季的底層(Bottom)與表層(Surface)之環境因子。…………………………………...………………..……40 圖5. 2016–2021年間,臺灣西部沿岸各測站四季之葉綠素甲濃度。…...…......…..41 圖6. 2007–2021年間,本研究於臺灣西部沿岸14個測站採樣之環境因子主成份分析(Principal component analysis, PCA)結果。………………………………42 圖7. 本研究於2007–2021年間,臺灣西部沿岸海域各測站之底拖網數與物種數累積曲線圖。……………………………………….………………………..……..43 圖8. 本研究各測站之物種多樣性指數。…………………………………….……...44 圖9. 2007–2021年間,本研究於七股(CG)與澎湖水道(PC)之頭足類物種組成集群分析結果。…………………………………………………….…….……...46 圖10. 2007–2021年間,本研究在七股(CG)與澎湖水道(PC)捕獲之頭足類於不同採樣水深的豐度分布圖。…………………………………….…….……...47 圖11. 本研究之100 m以淺頭足類前九優勢種與剩餘非優勢種(Other species)於各測站平均豐度圖。………………………………………………………..…...48 圖12. 2007–2021年間,臺灣西部沿岸水深100 m以淺頭足類物種組成之非度量多維度空間分析(nMDS)結果。……………………………………….………….49 圖13. 2007–2021年間,臺灣西部沿岸水深100 m以淺頭足類物種組成於各年份之集群分析結果。…………………………………………………………………….50 圖14. 2007–2021年間,臺灣西部沿岸水深100 m以淺頭足類物種組成於各月份之集群分析結果。………………………………………………………………….…51 圖15. 2007–2021年間,本研究捕獲之頭足類優勢種的平均豐度在前期(2007–2010年)與後期(2016–2021年)分布圖。….…………………..……....……52 圖16. 2007–2021年間,本研究於臺灣西部沿岸捕獲的前六優勢頭足類之豐度與底層水溫散佈圖。…………………………………………………..…….………..53 圖17. 2007–2021年間,本研究於臺灣西部沿岸捕獲的前六優勢頭足類之豐度與底層溶氧散佈圖。…………………………………….……………...…..….……..54 圖18. 2007–2021年間,本研究於臺灣西部沿岸捕獲的前六優勢頭足類之豐度與底層鹽度散佈圖。…………………………………………………..……………...55 圖19. 本研究捕獲的虎斑烏賊(Sepia pharaonis)(A)外套膜長-體重關係曲線,(B)不同性成熟階段之體長頻度圖。…………………….………………...…..56 圖20. 本研究捕獲的虎斑烏賊(Sepia pharaonis)各月份體長頻度圖。……...….57 圖21. 本研究捕獲的頭足類前六優勢種之北群(N)和南群(S)於不同月份之平均豐度堆疊圖。……………………………………………………………..…...58 圖22. 本研究捕獲的虎斑烏賊(Sepia pharaonis)於不同發育成熟度(Maturity)的月份深度分布圖。…………………………………………………………….59 圖23. 本研究捕獲的唇瓣烏賊(Sepia lycidas)(A)外套膜長-體重關係曲線,(B)不同性成熟階段之體長頻度圖。………………………………………….....60 圖24. 本研究捕獲的唇瓣烏賊(Sepia lycidas)各月份體長頻度分布圖。…..…...61 圖25. 本研究捕獲的唇瓣烏賊(Sepia lycidas)於不同發育成熟度(Maturity)的月份深度分布圖。……………………………………………………………….62 圖26. 本研究捕獲的金烏賊(Sepia esculenta)(A)外套膜長-體重關係曲線,(B)不同性成熟階段之體長頻度圖。………………………………..………..….63 圖27. 本研究捕獲的金烏賊(Sepia esculenta)各月份體長頻度分布圖。…...…..64 圖28. 本研究捕獲的金烏賊(Sepia esculenta)於不同發育成熟度(Maturity)的月份深度分布圖。…………………………………………………………….…65 圖29. 2007–2021年間,本研究採樣的四季底層水溫於前期(2007–2010年)和後期(2016–2021年)分布圖。………………...…………………………………66 表 次 表1. 2007–2021年間,本研究於各測站之網次數(n)、底拖水深(Trawl Depth, m)的最大值(Max)、最小值(Min)、中位數(Median)和平均值±標準差(Mean±SD)。…………………………………..……………………...….......…...67 表2. 2007–2021年間,本研究於臺灣西部沿岸14個測站四季的環境因子Kruskal-Wallis test結果。……………………………………...………….…….…….…...68 表3. 2007–2021年間,本研究於臺灣西部沿岸14個測站採樣之環境因子主成份分析(Principal component analysis, PCA)各軸排序結果。…………………….69 表4. 本研究各測站的頭足類平均豐度(ind./104 m2)與相對百分比(Relative abundance, RA)。…………………………………………..……….……………70 表5. 本研究各測站的頭足類平均生物量(g/104 m2)與相對百分比(Relative abundance, RA)。……………………………………………………….…….….72 表6. 2007–2021年間,臺灣西部沿岸水深100 m以淺頭足類之種類組成於南北群(Groups N&S)的相似度貢獻百分比(Similarity percentage, SIMPER)結果。…………………………………………………………………………………….74 表7. 2007–2021年間,本研究於臺灣西部沿岸海域捕獲的頭足類於「北群」(N)和「南群」(S)之物種平均豐度(ind./104 m2)與排序表。……………...…75 表8. 2007–2021年間,本研究頭足類前九優勢種於各年份之平均豐度(ind./104 m2)與Mann-Whitney U test分析結果。………….………………….….…..…….76 表9. 本研究捕獲的前六優勢種與環境因子之斯皮爾曼等級相關係數分析(Spearman’s rank correlation coefficient)結果。……………………………….77 表10. 2007–2021年間,臺灣西部沿岸苗栗至枋寮捕獲的虎斑烏賊(Sepia pharaonis)形質測量資料。……………………………...………………………….……78 表11. 2007–2021年間,臺灣西部沿岸苗栗至枋寮捕獲的唇瓣烏賊(Sepia lycidas)形質測量資料。…………………………………………………....….………...78 表12. 2007–2021年間,臺灣西部沿岸苗栗至枋寮捕獲的金烏賊(Sepia esculenta)形質測量資料。…………………………………………………….…………...78 表13. 本研究於臺灣西部沿岸海域捕獲的頭足類物種名錄與過去文獻之比較。.79 表14. 本研究與過去文獻的集群分析各分群物種貢獻度百分比之比較。…..…...82 附 錄 附圖1. 2007–2021年間,臺灣西部沿岸水深100 m以淺頭足類物種組成之集群分析結果。…………………………………………………………………..….……..83 附表1. 2007–2021年間,本研究於臺灣西部沿海之各航次採樣日期、採樣測站、測站水深範圍與底拖網數表。……………………………………..…………...84 附表2. 2007–2021年間,本研究於臺灣西部沿海14個測站各年四季採樣的底拖網數表。……………………………………………………………………….……86 附表3. 2007–2021年間,本研究的底層水溫(Temperature, °C)事後檢定Dunn’s test分析結果。……………………………...………….........……………..……..88 附表4. 2007–2021年間,本研究的底層水鹽度(Salinity, psu)事後檢定Dunn’s test分析結果。…………………………………………..…………………..……….91 附表5. 2007–2021年間,本研究的底層水溶氧(Dissolved oxygen, mg/l)事後檢定Dunn’s test分析結果。….…………………..…………………….……..……….94 附表6. 2007–2021年間,本研究的底層葉綠素甲(Chlorophyll-a, μg/L)事後檢定Dunn’s test分析結果。……………………………………….……..……..……..97 附表7. 2007–2021年間,本研究於臺灣西部沿海捕獲的頭足類物種名錄。….......99 附表8. 2007–2021年間,本研究於臺灣西部沿岸各測站捕獲的頭足類個體數表。…………………………………………………………………………………...101 圖版. 2007–2021年間,本研究捕獲的前六優勢物種樣本照。…………………...103 |
參考文獻 References |
中文文獻 王凱毅。2009。臺灣東北部陸棚海域劍尖槍鎖管生活史之研究。國立臺灣海洋大學環境生物與漁業科學學系,博士論文。 王凱毅、廖正信、張可揚、李國添。2014。臺灣海峽南部中國槍鎖管豐度與海表溫度異常之關係。水產研究22(2), 25-34。 朱文斌、薛利建、盧占暉、徐漢祥、徐開達。2014。東海南部海域頭足類群落結構特徵及其與環境關係。海洋與湖沼45-2, 436-442。 郝振林、張秀梅、張沛東。2007。金烏賊的生物學特性及增殖技術。生態學雜誌26(4), 601-606。 徐顗雯。2019。臺灣西南沿海頭足類的種類組成與時空分布。中山大學生物科學研究所,碩士論文。 陳姿君。2010。臺灣西南部沿海蟹類的種類組成及優勢種之時空分佈。國立中山大學海洋生物科技暨資源學系,碩士論文。 陳姿君、陳國書、陳煦森、陳志遠、陳孟仙。2022。台江國家公園海域底棲蟹類的多樣性。國家公園學報32(2), 42-52。 陳國書、陳煦森、蘇彥霖、陳志遠、陳孟仙。2020。台江國家公園海域底棲魚類相與環境分析。國家公園學報30(2), 42-59。 陳瑞谷、王凱毅、陳威克、莊世昌、張可揚。2019。臺灣北部水域經濟性頭足類物種之分布與環境因子影響。水產研究27(1), 1-12。 陳煦森、陳國書、陳志遠、陳孟仙。2021。台江國家公園海域底棲蝦種組成與空間分布。國家公園學報31(2), 1-14。 彭彥菱。2019。臺灣周遭海域頭足類群聚結構與兩種槍魷生活史特徵之探討。臺灣大學海洋研究所,碩士論文。 盧重成、鍾文松。2017。臺灣產頭足類動物圖鑑。國立自然科學博物館,台中。 戴泉水、盧振彬、洪明進、肖方森、朱進福。2004。臺灣海峽南部海域游泳生物區系組成和漁業資源現狀。中國水產科學11(4), 360-366。 英文文獻 Abdulqader, E. A., Abdurahiman, P., Mansour, L., Harrath, A. H., Qurban, M. A., & Rabaoui, L. (2020). Bycatch and discards of shrimp trawling in the Saudi waters of the Arabian Gulf: ecosystem impact assessment and implications for a sustainable fishery management. Fisheries Research, 229, 105596. doi: https://doi.org/10.1016/j.fishres.2020.105596 Alabia, I. D., Saitoh, S.-I., Igarashi, H., Ishikawa, Y., & Imamura, Y. (2020). Spatial habitat shifts of oceanic cephalopod (Ommastrephes bartramii) in oscillating climate. Remote Sensing, 12(3), 521. doi: https://doi.org/10.3390/rs12030521 Boyle, P., & Rodhouse, P. (2005). Cephalopods: ecology and fisheries. Wyandotte, KS: Blackwell Pub Professional. Chembian, A. J., & Mathew, S. (2011). Migration and spawning behaviour of the pharaoh cuttlefish Sepia pharaonis Ehrenberg, 1831 along the south-west coast of India. Indian Journal of Fisheries, 58(3), 1-8. Chen, H. S., Chen, K. S., Chen, C. Y., Hung, C. C., Meng, P. J., & Chen, M. H. (2021). Spatiotemporal distribution of shrimp assemblages in the western coastal waters off Taiwan at the Tropic of Cancer, Western Pacific Ocean. Estuarine, Coastal and Shelf Science, 255, 107356. doi: https://doi.org/10.1016/j.ecss.2021.107356 Chen, M. H., & Ho, Y. F. (2023). taijiang_national_park_beamtrawling_2016-2018. Taiwan Biodiversity Information Facility (TaiBIF). Sampling event dataset. doi: https://doi.org/10.15468/4bjkms Chen, M. H., & Wu, Y. L. (2023). Cephalopod assemblages off western Taiwan. Version 1.1. Department of Oceanography, National Sun Yat-sen University, Kaohsiung Taiwan. Sampling event dataset. doi: https://doi.org/10.15468/8td9gq Choe, S. (1966). On the eggs, rearing, habits of the fry, and growth of some Cephalopoda. Bulletin of Marine Science, 16(2), 330-348. Choi, K., Lee, C. I., Hwang, K., Kim, S.-W., Park, J.-H., & Gong, Y. (2008). Distribution and migration of Japanese common squid, Todarodes pacificus, in the southwestern part of the East (Japan) Sea. Fisheries Research, 91(2-3), 281-290. doi: https://doi.org/10.1016/j.fishres.2007.12.009 Clarke, M. R. (1996). The role of cephalopods in the world’s oceans: an introduction. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1343), 979-983. doi: https://doi.org/10.1098/rstb.1996.0088 Coelho, M. (1984). Review of the influence of oceanographic factors on cephalopod distribution and life cycles. NAFO Scientific Council Studies, 9, 47-57. Collins, M. A., Yau, C., Allcock, L., & Thurston, M. H. (2001). Distribution of deep-water benthic and bentho–pelagic cephalopods from the north-east Atlantic. Journal of the Marine Biological Association of the United Kingdom, 81(1), 105-117. doi: https://doi.org/10.1017/S0025315401003459 Fanelli, E., Cartes, J. E., & Papiol, V. (2011). Assemblage structure and trophic ecology of deep-sea demersal cephalopods in the Balearic basin (NW Mediterranean). Marine and Freshwater Research, 63(3), 264-274. doi: https://doi.org/10.1071/MF11157 Gabr, H. R., Hanlon, R. T., Hanafy, M. H., & El-Etreby, S. G. (1998). Maturation, fecundity and seasonality of reproduction of two commercially valuable cuttlefish, Sepia pharaonis and S. dollfusi, in the Suez Canal. Fisheries Research, 36(2-3), 99-115. doi: https://doi.org/10.1016/S0165-7836(98)00107-6 Gardiner, K., & Dick, T. A. (2010). Arctic cephalopod distributions and their associated predators. Polar Research, 29(2), 209-227. doi: https://doi.org/10.1111/j.1751-8369.2010.00146.x González, M., & Sánchez, P. (2002). Cephalopod assemblages caught by trawling along the Iberian Peninsula Mediterranean coast. Scientia Marina, 66(S2), 199-208. doi: https://doi.org/10.3989/scimar.2002.66s2199 Hanlon, R. (2007). Cephalopod dynamic camouflage. Current Biology, 17(11), R400-R404. Hanlon, R. T., Chiao, C. C., Mäthger, L. M., Buresch, K. C., Barbosa, A., Allen, J. J., ... & Chubb, C. (2011). Rapid adaptive camouflage in cephalopods. In M. Steven, & S. Merilaita (Eds.), Animal camouflage: mechanisms and functions (pp. 145-163). Oxford, UK: Cambridge University Press. Hill, M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54(2), 427-432. doi: https://doi.org/10.2307/1934352 Hong, H., Chai, F., Zhang, C., Huang, B., Jiang, Y., & Hu, J. (2011). An overview of physical and biogeochemical processes and ecosystem dynamics in the Taiwan Strait. Continental Shelf Research, 31(6), S3-S12. doi: https://doi.org/10.1016/j.csr.2011.02.002 Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7(12), 1451-1456. doi: https://doi.org/10.1111/2041-210X.12613 Ibáñez, C. M., Camus, P. A., & Rocha, F. J. (2009). Diversity and distribution of cephalopod species off the coast of Chile. Marine Biology Research, 5(4), 374-384. doi: https://doi.org/10.1080/17451000802534873 Jan, S., Wang, J., Chern, C.-S., & Chao, S.-Y. (2002). Seasonal variation of the circulation in the Taiwan Strait. Journal of Marine Systems, 35(3-4), 249-268. doi: https://doi.org/10.1016/S0924-7963(02)00130-6 Jan, S., & Chao, S.-Y. (2003). Seasonal variation of volume transport in the major inflow region of the Taiwan Strait: The Penghu Channel. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6-7), 1117-1126. doi: https://doi.org/10.1016/S0967-0645(03)00013-4 Jan, S., Tseng, Y.-H., & Dietrich, D. E. (2010). Sources of water in the Taiwan Strait. Journal of Oceanography, 66(2), 211-221. doi: https://doi.org/10.1007/s10872-010-0019-7 Jereb, P., & Roper, C. F. (Eds.). (2005). Cephalopods of the world: chambered nautiluses and sepioids (Nautilidae, Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidae, and Spirulidae) (Vol. 1). Rome, Italy: Food & Agriculture Organization. Ji, F., Guo, X., Wang, Y., & Takayama, K. (2020). Response of the Japanese flying squid (Todarodes pacificus) in the Japan Sea to future climate warming scenarios. Climatic Change, 159, 601-618. doi: https://doi.org/10.1007/s10584-020-02689-3 Jiang, X. -M., Peng, R.-B., Luo, J., & Tang F. (2013). Effects of temperature on the embryonic development and larval growth of Sepia lycidas. Yingyong Shengtai Xuebao, 24(5), 1453-1460. Jin, Y., Jin, X., Gorfine, H., Wu, Q., & Shan, X. (2020). Modeling the oceanographic impacts on the spatial distribution of common cephalopods during autumn in the yellow sea. Frontiers in Marine Science, 7, 432. doi: https://doi.org/10.3389/fmars.2020.00432 Lee, M.-A., Huang, W.-P., Shen, Y.-L., Weng, J.-S., Semedi, B., Wang, Y.-C., & Chan, J.-W. (2021). Long-term observations of interannual and decadal variation of sea surface temperature in the Taiwan Strait. Journal of Marine Science and Technology, 29(4), 7. doi: https://doi.org/10.51400/2709-6998.1587 Liu, Y., Xia, X., Tian, Y., Alabia, I. D., Ma, S., Sun, P., & Saitoh, S.-I. (2021). Influence of spawning ground dynamics on the long-term abundance of Japanese flying squid (Todarodes pacificus) winter cohort. Frontiers in Marine Science, 8, 620. doi: https://doi.org/10.3389/fmars.2021.659816 Lu, C. (1998). Diversity of Cephalopoda from the waters around Taiwan. Phuket Marine Biological Center Special Publication, 18(2), 331-340. Lu, C., & Roper, C. F. (1979). Cephalopods from deepwater dumpsite 106 (western Atlantic): vertical distribution and seasonal abundance. Smithsonian Contributions to Zoology, 288, 1-36. Mather, J. A. (1986). Sand digging in Sepia officinalis: Assessment of a Cephalopod molluscs" fixed" behavior pattern. Journal of Comparative Psychology, 100(3), 315. doi: https://doi.org/10.1037/0735-7036.100.3.315 Mittelbach, G. G., & McGill, B. J. (2019). Community ecology (2nd ed.). New York, NY: Oxford University Press. Natsukari, Y., & Tashiro, M. (1991). Neritic squid resources and cuttlefish resources in Japan. Marine Behaviour and Physiology, 18(3), 149-226. doi: https://doi.org/10.1080/10236249109378785 Norman, M., Nabhitabhata, J., & Lu, C. (2016). An updated checklist of the cephalopods of the South China Sea. Raffles Bulletin of Zoology, 34, 566-592. Norman, M., & Reid, A. (2000). Guide to squid, cuttlefish and octopuses of Australasia. Victoria, Australia: Commonwealth Scientific and Industrial Research Organization. Oesterwind, D., Barrett, C. J., Sell, A. F., Núñez-Riboni, I., Kloppmann, M., Piatkowski, U., ... & Laptikhovsky, V. (2022). Climate change-related changes in cephalopod biodiversity on the North East Atlantic Shelf. Biodiversity and Conservation, 31(5-6), 1491-1518. doi: https://doi.org/10.1007/s10531-022-02403-y Okutani, T. (2005). Cuttlefishes and squids of the world. Tokyo, Japan: National Cooperative Association of Squid Processors. Pang, Y., Tian, Y., Fu, C., Wang, B., Li, J., Ren, Y., & Wan, R. (2018). Variability of coastal cephalopods in overexploited China Seas under climate change with implications on fisheries management. Fisheries Research, 208, 22-33. doi: https://doi.org/10.1016/j.fishres.2018.07.004 Pang, Y., Tian, Y., Ju, P., Sun, P., Ye, Z., Liu, Y., Ren, Y., & Wan, R. (2022). Change in cephalopod species composition in the overexploited coastal China seas with a closer look on Haizhou Bay, Yellow Sea. Regional Studies in Marine Science, 102419. doi: https://doi.org/10.1016/j.rsma.2022.102419 Pecl, G. T., & Jackson, G. D. (2008). The potential impacts of climate change on inshore squid: biology, ecology and fisheries. Reviews in Fish Biology and Fisheries, 18(4), 373-385. doi: https://doi.org/10.1007/s11160-007-9077-3 Pierce, G. J., Valavanis, V. D., Guerra, A., Jereb, P., Orsi-Relini, L., Bellido, J. M., Katara, I., Piatkowski, U., Pereira, J., & Balguerias, E. (2008). A review of cephalopod–environment interactions in European Seas. Hydrobiologia, 612(1), 49-70. doi: https://doi.org/10.1007/s10750-008-9489-7 Quetglas, A., Carbonell, A., & Sánchez, P. (2000). Demersal continental shelf and upper slope cephalopod assemblages from the Balearic Sea (north-western Mediterranean). Biological aspects of some deep-sea species. Estuarine, Coastal and Shelf Science, 50(6), 739-749. doi: https://doi.org/10.1006/ecss.1999.0603 Quetglas, A., Valls, M., Capezzuto, F., Casciaro, L., Cuccu, D., González, M., ... & Keller, S. (2019). Long-term spatiotemporal dynamics of cephalopod assemblages in the Mediterranean Sea. Scientia Marina, 83(1), 33-42. doi: http://doi.org/10.3989/scimar.05015.06A R Core Team. (2022). R: A language and environment for statistical computing. Retrieved from R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/ Robin, J. P., Roberts, M., Zeidberg, L., Bloor, I., Rodriguez, A., Briceno, F., ... & Mather, J. (2014). Transitions during cephalopod life history: the role of habitat, environment, functional morphology and behaviour. Advances in marine biology, 67, 361-437. doi: https://doi.org/10.1016/B978-0-12-800287-2.00004-4 Rodhouse, P. G., Pierce, G. J., Nichols, O. C., Sauer, W. H., Arkhipkin, A. I., Laptikhovsky, V. V., Lipiński, M. R., Ramos, J. E., Gras, M., & Kidokoro, H. (2014). Advances in cephalopod science: biology, ecology, cultivation and fisheries. In E. Vidal (Ed.), Advances in Marine Biology (pp. 227-234). Waltham, MA: Elsevier. Roper, C. F., Sweeney, M. J., & Nauen, C. (1984). Cephalopods of the world. An annotated and illustrated catalogue of species of interest to fisheries. Rome, Italy: Food & Agriculture Organization. Roper, C. F., & Voss, G. L. (1983). Guidelines for taxonomic descriptions of cephalopod species. The biology and resource potential of cephalopods. Washington, D.C.: Memoirs of the National Museum of Victoria. Rosa, R., Pissarra, V., Borges, F. O., Xavier, J., Gleadall, I. G., Golikov, A., ... & Villanueva, R. (2019). Global patterns of species richness in coastal cephalopods. Frontiers in Marine Science, 469. doi: https://doi.org/10.3389/fmars.2019.00469 Silva, L., Vila, Y., Torres, M. Á., Sobrino, I., & Acosta, J. J. (2011). Cephalopod assemblages, abundance and species distribution in the Gulf of Cadiz (SW Spain). Aquatic Living Resources, 24(1), 13-26. doi: https://doi.org/10.1051/alr/2011101 Tseng, H.-C., You, W.-L., Huang, W., Chung, C.-C., Tsai, A.-Y., Chen, T.-Y., Lan, K.-W., & Gong, G.-C. (2020). Seasonal variations of marine environment and primary production in the Taiwan Strait. Frontiers in Marine Science, 7(38), 1-12. doi: https://doi.org/10.3389/fmars.2020.00038 Turchin, P. (2003). Ecology: Evolution in population dynamics. Nature, 424(6946), 257-258. Visser, F., Merten, V. J., Bayer, T., Oudejans, M. G., De Jonge, D. S. W., Puebla, O., ... & Hoving, H. J. T. (2021). Deep-sea predator niche segregation revealed by combined cetacean biologging and eDNA analysis of cephalopod prey. Science Advances, 7(14), eabf5908. doi: https://doi.org/10.1126/sciadv.abf5908 Whittaker, R. H. (1970). Communities and ecosystems. Communities and Ecosystems. Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 21(2-3), 213-251. doi: https://doi.org/10.2307/1218190 Wu, C.-R., Chao, S.-Y., & Hsu, C. (2007). Transient, seasonal and interannual variability of the Taiwan Strait current. Journal of Oceanography, 63, 821-833. doi: https://doi.org/10.1007/s10872-007-0070-1 Xavier, J. C., Cherel, Y., Allcock, L., Rosa, R., Sabirov, R. M., Blicher, M. E., & Golikov, A. V. (2018). A review on the biodiversity, distribution and trophic role of cephalopods in the Arctic and Antarctic marine ecosystems under a changing ocean. Marine Biology, 165(5), 1-26. doi: https://doi.org/10.1007/s00227-018-3352-9 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2028-08-16 校外 Off-campus:開放下載的時間 available 2028-08-16 您的 IP(校外) 位址是 3.147.75.46 現在時間是 2024-11-24 論文校外開放下載的時間是 2028-08-16 Your IP address is 3.147.75.46 The current date is 2024-11-24 This thesis will be available to you on 2028-08-16. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2028-08-16 |
QR Code |