Responsive image
博碩士論文 etd-0717123-122445 詳細資訊
Title page for etd-0717123-122445
論文名稱
Title
小琉球珊瑚礁魚類警戒心與人類活動之關聯
The relationship between coral reef fish wariness and anthropogenic activities in the Xiaoliuqiu
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2023-07-31
繳交日期
Date of Submission
2023-08-17
關鍵字
Keywords
海洋保護區、珊瑚礁魚類、魚類行為、水下立體攝影機系統、小琉球
diver operated stereo video system, marine protected area, minimum approach distance, artisanal fishery, Xiaoliuqiu, coral reef fish
統計
Statistics
本論文已被瀏覽 58 次,被下載 1
The thesis/dissertation has been browsed 58 times, has been downloaded 1 times.
中文摘要
臺灣是一個海島國家,海洋支撐著沿海地區的社區發展、文化和經濟。然而,人類世(Anthropocene)為海洋帶來了負面的影響。為保育及永續利用海洋資源,全臺各地設立了海洋保護區,小琉球也包含在內。當地有不同程度的管理措施去限制人類活動。我們在小琉球三個熱門潛點,禁漁區的美人洞、多功能使用區的大福和山豬溝,使用潛水員操作的立體攝影機系統進行水下調查,評估不同程度的管理措施如何改變魚類行為。透過測量食用魚種:雙斑櫛齒刺尾鯛(Ctenochaetus binotatus) 和福氏鸚哥魚(Scarus forsteni),及非食用魚種:雙斑光鰓雀鯛(Chromis margaritifer) 和福氏刺尻魚(Centropyge vrolikii) 的體長和最小接近距離,測試以下假設:(1)多功能使用區的食用魚種,體型比禁漁區的同種小及擁有更強警戒心;(2)隨著體長增加,食用魚種表現出更高的警戒心;(3)非食用魚種在禁漁區和多功能使用區的體型和警戒心沒有顯著差異。本研究共錄得294尾食用魚種,772尾非食用魚種。所有研究魚種的警戒心均在美人洞與山豬溝之間表現出顯著差異,但體型在不同潛點之間找不到代表性差異。我們的研究發現,魚類在多功能使用區有更高的警戒心,魚類警戒心相較於體型大小更容易被檢測。因此,我們建議將魚類警戒心納入評估海洋保護區管理有效性的指標。並建議廣泛在臺灣使用能快速獲得準確、有效數據的潛水員操作的立體攝影機系統。
Abstract
Taiwan, an island country, is home to communities, cultures, and an economy that rely heavily on the ocean. Ocean ecosystems have undergone substantial changes during the Anthropocene. To protect marine resources in Taiwan, protected areas have been established. One such area is Xiaoliuqiu, which has been designated as a marine protected area with various regulations governing human activity within specific zones. To evaluate how human activity affects fish behavior under different management regimes in Xiaoliuqiu, an underwater survey using a diver-operated stereo video system were conducted at three popular diving sites: Beauty Cave (a no-take zone), Da Fu (a multiple-use zone), and Wild Boar Trench (a multiple-use zone). The length and wariness of four fish species were assessed, which were Ctenochaetus binotatus, Scarus forsteni, Chromis margaritifer, and Centropyge vrolikii. The first two of these species are considered edible, and the second two are considered inedible. Three hypotheses were tested: (1) edible species in multiple-use zones would be smaller and more wary than those in no-take zones, (2) wariness would be positively correlated with length among edible species, and (3) inedible species in no-take zones would be of similar length and as wary as those in multiple-use zones. Our study recorded 294 and 772 fish belonging to the edible and inedible species, respectively. All species significantly differed in the level of wariness in Wild Boar Trench; however, no significant difference in size was observed between sites. Fish in multiple-use zones were more wary than those in no-take zones. Fish wariness is a more sensitive indicator than body size. Wariness is an effective indicator of the effectiveness of management in marine protected areas. We recommend for diver-operated stereo video systems to be widely used in Taiwan.
目次 Table of Contents
CONTENTS
THESIS VALIDATION LETTER ii
THESIS AUTHORIZATION LETTER iii
ACKNOWLEDGEMENTS iv
中文摘要 vi
ABSTRACT vii
TABLE CONTENTS x
FIGURE CONTENTS xi
INTRODUCTION 1
MATERIALS AND METHODS 7
Study sites 7
Studied species 11
Underwater surveys 13
Calibration of the diver-operated stereo video system 15
Video analysis 16
Statistical analyses 17
RESULTS 19
Fish size 19
Fish wariness 21
Relationship between fish length and wariness 22
DISCUSSION 25
The effect of depth on wariness 25
Wariness by species 26
Wariness by site 27
Beauty Cave 28
Da Fu 29
Wild Boar Trench 31
The Potential effect to the protogynous species 36
Effect of removing herbivore 37
Stereo video system 38
CONCLUSION 41
REFERENCE 42
TABLES 62
FIGURES 66
APPENDIX 1 79

參考文獻 References
Allen, G. R., Steene, R. C., Humann, P., & DeLoach, N. (2004). Reef fish identification: tropical Pacific. Choice Reviews Online, 41(07), 41–4050. https://doi.org/10.5860/choice.41-4050
Andradi-Brown, D. A., Gress, E., Laverick, J. H., Monfared, M. a. A., Rogers, A. D., & Exton, D. A. (2017). Wariness of reef fish to passive diver presence with varying dive gear type across a coral reef depth gradient. Journal of the Marine Biological Association of the United Kingdom, 98(7), 1733–1743. https://doi.org/10.1017/s0025315417001278
Begossi, A. (2013). Ecological, cultural, and economic approaches to managing artisanal fisheries. Environment, Development and Sustainability, 16(1), 5–34. https://doi.org/10.1007/s10668-013-9471-z
Bellwood, D. R., Hughes, T. P., Folke, C., & Nyström, M. (2004). Confronting the coral reef crisis. Nature, 429(6994), 827–833. https://doi.org/10.1038/nature02691
Bender, M. G., Machado, G. R., De Azevedo Silva, P. J., Floeter, S. R., Monteiro-Netto, C., Luiz, O. J., & Ferreira, C. E. L. (2014). Local ecological knowledge and scientific data reveal overexploitation by multigear artisanal fisheries in the southwestern Atlantic. PLOS ONE, 9(10), e110332. https://doi.org/10.1371/journal.pone.0110332
Benevides, L. J., De Anchieta C. C. Nunes, J., Costa, T. L. A., & Sampaio, C. L. S. (2016). Flight response of the barber surgeonfish, Acanthurus bahianus Castelnau, 1855 (Teleostei: Acanthuridae), to spearfisher presence. Neotropical Ichthyology, 14(1). https://doi.org/10.1590/1982-0224-20150010
Benevides, L. J., Pinto, T. K., De Anchieta C.C. Nunes, J., & Sampaio, C. L. S. (2018). Fish escape behavior as a monitoring tool in the largest Brazilian multiple-use Marine Protected Area. Ocean & Coastal Management, 152, 154–162. https://doi.org/10.1016/j.ocecoaman.2017.11.029
Berger-Tal, O., Blumstein, D. T., Carroll, S. P., Fisher, R. N., Mesnick, S. L., Owen, M. A., Saltz, D., St Clair, C. C., & Swaisgood, R. R. (2016). A systematic survey of the integration of animal behavior into conservation. Conservation Biology, 30(4), 744–753. https://doi.org/10.1111/cobi.12654
Bergseth, B. J., Williamson, D. H., Frisch, A. J., & Russ, G. R. (2016). Protected areas preserve natural behaviour of a targeted fish species on coral reefs. Biological Conservation, 198, 202–209. https://doi.org/10.1016/j.biocon.2016.04.011
Biro, P. A., & Sampson, P. (2015). Fishing directly selects on growth rate via behaviour: implications of growth-selection that is independent of size. Proceedings of the Royal Society B: Biological Sciences, 282(1802), 20142283. https://doi.org/10.1098/rspb.2014.2283
Brown, C., & Laland, K. N. (2003). Social learning in fishes: a review. Fish and Fisheries, 4(3), 280–288. https://doi.org/10.1046/j.1467-2979.2003.00122.x
Brown, G. E., & Chivers, D. P. (2007). Learning about danger: chemical alarm cues and the assessment of predation risk by fishes. In Blackwell Publishing Ltd eBooks (pp. 49–69). https://doi.org/10.1002/9780470996058.ch4
Burghart, E., Mar, M., Samuel G, R., Zepecki, C., & Blumstein, D. T. (2023). How does damselfish risk assessment vary with increased predator and shoal size? Journal of Experimental Marine Biology and Ecology, 561. https://doi.org/10.1016/j.jembe.2023.151871
Burkepile, D. E., & Hay, M. E. (2008). Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proceedings of the National Academy of Sciences of the United States of America, 105(42), 16201–16206. https://doi.org/10.1073/pnas.0801946105
Burkepile, D. E., & Hay, M. E. (2010). Impact of herbivore identity on algal succession and coral growth on a Caribbean reef. PLOS ONE, 5(1), e8963. https://doi.org/10.1371/journal.pone.0008963
Campbell, S. J., & Pardede, S. (2006). Reef fish structure and cascading effects in response to artisanal fishing pressure. Fisheries Research, 79(1–2), 75–83. https://doi.org/10.1016/j.fishres.2005.12.015
Caselle, J. E., Rassweiler, A., Hamilton, S. L., & Warner, R. R. (2015). Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Scientific Reports, 5(1). https://doi.org/10.1038/srep14102
Chang S. K., Liu L. L., Fan T. Y., & Liao T. Y. (2019).The integrated project of Liuqiu in development of ecology, livelihood and life for ocean community, commissioned work report of 2019. Report prepared for Pingtung County Marine and Fisheries Management Office
Chang S. K., Liu L. L., & Fan T. Y. (2020).The integrated project of Liuqiu in development of ecology, livelihood and life for ocean community, commissioned work report of 2020. Report prepared for Pingtung County Marine and Fisheries Management Office
Chang S. K., Liu L. L., Fan T. Y., Chao S. M., & Nozawa. Y. (2021a).The integrated project of Liuqiu in development of ecology, livelihood and life for ocean community, commissioned work report of 2021. Report prepared for Pingtung County Marine and Fisheries Management Office
Chang S. K., Liu L. L., Liao T. Y., Chang Y. (2021b). Benthic ecological survey and management of the nearshore fishes in the marine protected area of Xiaoliuqiu. Report prepared for Pingtung County Marine and Fisheries Management Office
Chang S. K., Liu L. L., Liao T. Y., Chang Y., Fan T. Y., & Wu Z. M. (2021c).The evaluation on the impact on the ecology of Xiaoliuqiu and the fishery of Hengchun Peninsula of the oil spill from the the Dalin Oil Refinery of Taiwan's state-run oil refiner CPC Corp. Report prepared for Pingtung County Government
Chang S. K., Liu L. L., Chang Y., Fan T. Y., Wu Z. M., Li C. L., & Chen B. N. (2022). The investigation and restoration of the nearshore fishes and key species in the marine protected area of Xiaoliuqiu. Report prepared for Pingtung County Marine and Fisheries Management Office
Chen C. T. (2005). Studies on Biodiversity in the Waters around Hisao-Liu-Chiao. Report prepared for the science and technology project of Fisheries Agency, Council of Agriculture, Executive Yuan (Publication No. PG9410-1711) Retrieved from https://www.grb.gov.tw/search/planDetail?id=1157030
Chen C. T. (2006). Studies on Biodiversity in the Waters around Hisao-Liu-Chiao. Report prepared for the science and technology project of Fisheries Agency,Council of Agriculture,Executive Yuan (Publication No. PG9507-3303) Retrieved from https://www.grb.gov.tw/search/planDetail?id=1269743
Chen C. T. (2007). Studies on Biodiversity in the Waters around Hisao-Liu-Chiao. Report prepared for the science and technology project of Fisheries Agency,Council of Agriculture,Executive Yuan (Publication No. PW9611-1076) Retrieved from https://www.grb.gov.tw/search/planDetail?id=1494589
Chen J. P., Wang F. Y., Liu M. Y., & Ho S. H., (2017)The beautiful uncharted view in Taiwan. The research of coral reef investigation of Xiaoliuqiu (n.d.). Retrieved from https://scitechvista.nat.gov.tw/Article/c000003/detail?ID=8b042d88-e59b-4d2a-87ce-72785db1c9bf
Chivers, D. P., & Smith, R. J. F. (1998). Chemical alarm signalling in aquatic predator-prey systems: A review and prospectus. Ecoscience, 5(3), 338–352. https://doi.org/10.1080/11956860.1998.11682471
Coker, D. J., Wilson, S. K., & Pratchett, M. S. (2013). Importance of live coral habitat for reef fishes. Reviews in Fish Biology and Fisheries, 24(1), 89–126. https://doi.org/10.1007/s11160-013-9319-5
Comeros-Raynal, M. T., Choat, J. H., Polidoro, B., Clements, K. D., Abesamis, R. A., Craig, M. T., Lazuardi, M. E., McIlwain, J. L., Muljadi, A., Myers, R. F., Nañola, C. L., Pardede, S., Rocha, L. A., Russell, B. C., Sanciangco, J. C., Stockwell, B., Harwell, H., & Carpenter, K. E. (2012). The likelihood of extinction of iconic and dominant herbivores and detritivores of coral reefs: the parrotfishes and surgeonfishes. PLOS ONE, 7(7), e39825. https://doi.org/10.1371/journal.pone.0039825
Cooper, W. E., & Blumstein, D. T. (2018). Escaping from Predators: An Integrative View of Escape decisions. http://opus.ipfw.edu/math_facpubs/154/
Cooper, W. E., & Frederick, W. C. (2007). Optimal flight initiation distance. Journal of Theoretical Biology, 244(1), 59–67. https://doi.org/10.1016/j.jtbi.2006.07.011
Côté, I. M., Mosqueira, I., & Reynolds, J. D. (2001). Effects of marine reserve characteristics on the protection of fish populations: a meta-analysis. Journal of Fish Biology, 59(sa), 178–189. https://doi.org/10.1111/j.1095-8649.2001.tb01385.x
De Anchieta C. C. Nunes, J., Costa, Y., Blumstein, D. T., Leduc, A. O. H. C., Dórea, A., Benevides, L. J., Sampaio, C. L. S., & Barros, F. (2018). Global trends on reef fishes’ ecology of fear: Flight initiation distance for conservation. Marine Environmental Research, 136, 153–157. https://doi.org/10.1016/j.marenvres.2018.02.011
Di Lorenzo, M., Guidetti, P., Franco, A., Calò, A., & Claudet, J. (2020). Assessing spillover from marine protected areas and its drivers: A meta‐analytical approach. Fish and Fisheries, 21(5), 906–915. https://doi.org/10.1111/faf.12469
Dochez, M., Friedlander, A., Gouezo, M., Isechal, L., Lindfield, S. J., Nestor, V., Olsudong , D., Otto, E., & Muller-Karanassos , C. (2019). Monitoring Fish Populations in the Northern Reefs of Palau from 2015-2017. Technical Report No. 19-13, Palau International Coral Reef Center
Gallacher, J., Simmonds, N. B., Fellowes, H., Brown, N., Gill, N. J., Clark, W. C., Biggs, C., & Rodwell, L. D. (2016). Evaluating the success of a marine protected area: A systematic review approach. Journal of Environmental Management, 183, 280–293. https://doi.org/10.1016/j.jenvman.2016.08.029
Goetze, J., Januchowski-Hartley, F. A., Claudet, J., Langlois, T., Wilson, S. K., & Jupiter, S. D. (2017). Fish wariness is a more sensitive indicator to changes in fishing pressure than abundance, length or biomass. Ecological Applications, 27(4), 1178–1189. https://doi.org/10.1002/eap.1511
Gotanda, K. M., Turgeon, K., & Kramer, D. L. (2009). Body size and reserve protection affect flight initiation distance in parrotfishes. Behavioral Ecology and Sociobiology, 63(11), 1563–1572. https://doi.org/10.1007/s00265-009-0750-5
Gratwicke, B., & Speight, M. R. (2005). The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. Journal of Fish Biology, 66(3), 650–667. https://doi.org/10.1111/j.0022-1112.2005.00629.x
Greggor, A. L., Berger-Tal, O., Blumstein, D. T., Angeloni, L. M., Bessa-Gomes, C., Blackwell, B. F., St Clair, C. C., Crooks, K. R., De Silva, S., Fernández-Juricic, E., Goldenberg, S. Z., Mesnick, S. L., Owen, M. A., Price, C. J., Saltz, D., Schell, C. J., Suarez, A. V., Swaisgood, R. R., Winchell, C. S., & Sutherland, W. J. (2016). Research Priorities from Animal Behaviour for Maximising Conservation Progress. Trends in Ecology and Evolution, 31(12), 953–964. https://doi.org/10.1016/j.tree.2016.09.001
Griffin, A. S. (2004). Social learning about predators: a review and prospectus. Animal Learning & Behavior, 32(1), 131–140. https://doi.org/10.3758/bf03196014
Hamilton, S. L., Caselle, J. E., Standish, J. D., Schroeder, D. M., Love, M. S., Rosales-Casian, J. A., & Sosa-Nishizaki, O. (2007). Size-selective harvesting alters life histories of a temperate sex-change fish. Ecological Applications, 17(8), 2268–2280. https://doi.org/10.1890/06-1930.1
Hawkins, J. P., & Roberts, C. M. (2004a). Effects of artisanal fishing on Caribbean coral reefs. Conservation Biology, 18(1), 215–226. https://doi.org/10.1111/j.1523-1739.2004.00328.x
Hawkins, J. P., & Roberts, C. M. (2004b). Effects of fishing on sex-changing Caribbean parrotfishes. Biological Conservation, 115(2), 213–226. https://doi.org/10.1016/s0006-3207(03)00119-8
Helfman, G. S., & Schultz, E. T. (1984). Social transmission of behavioural traditions in a coral reef fish. Animal Behaviour, 32(2), 379–384. https://doi.org/10.1016/s0003-3472(84)80272-9
Hughes, T. P., Graham, N. a. J., Jackson, J. B. C., Mumby, P. J., & Steneck, R. S. (2010). Rising to the challenge of sustaining coral reef resilience. Trends in Ecology and Evolution, 25(11), 633–642. https://doi.org/10.1016/j.tree.2010.07.011
Jaco, E. M., & Steele, M. A. (2019). Pre‐closure fishing pressure predicts effects of marine protected areas. Journal of Applied Ecology, 57(2), 229–240. https://doi.org/10.1111/1365-2664.13541
Jaco, E. M., & Steele, M. A. (2020). Early indicators of MPA effects are detected by stereo-video. Marine Ecology Progress Series, 647, 161–177. https://doi.org/10.3354/meps13388
Januchowski-Hartley, F. A., Graham, N. a. J., Cinner, J. E., & Russ, G. R. (2012). Spillover of fish naïveté from marine reserves. Ecology Letters, 16(2), 191–197. https://doi.org/10.1111/ele.12028
Januchowski-Hartley, F. A., Graham, N. a. J., Cinner, J. E., & Russ, G. R. (2015). Local fishing influences coral reef fish behavior inside protected areas of the Indo-Pacific. Biological Conservation, 182, 8–12. https://doi.org/10.1016/j.biocon.2014.11.024
Januchowski-Hartley, F. A., Graham, N. a. J., Feary, D. A., Morove, T., & Cinner, J. E. (2011). Fear of Fishers: Human predation explains behavioral changes in coral reef fishes. PLOS ONE, 6(8), e22761. https://doi.org/10.1371/journal.pone.0022761
Januchowski-Hartley, F. A., Nash, K. L., & Lawton, R. (2012). Influence of spear guns, dive gear and observers on estimating fish flight initiation distance on coral reefs. Marine Ecology Progress Series, 469, 113–119. https://doi.org/10.3354/meps09971
Kato. S. (2019). The book of marine fish (You Y.X , trans.). Taiwan , Morning Star Publishing Inc .
Kendall, N. W., & Quinn, T. P. (2012). Size-selective fishing affects sex ratios and the opportunity for sexual selection in Alaskan sockeye salmon Oncorhynchus nerka. Oikos, 122(3), 411–420. https://doi.org/10.1111/j.1600-0706.2012.20319.x
Krützen, M., Mann, J., Heithaus, M. R., Connor, R. C., Bejder, L., & Sherwin, W. B. (2005). Cultural transmission of tool use in bottlenose dolphins. Proceedings of the National Academy of Sciences of the United States of America, 102(25), 8939–8943. https://doi.org/10.1073/pnas.0500232102
Kulbicki, M. (1998). How the acquired behaviour of commercial reef fishes may influence the results obtained from visual censuses. Journal of Experimental Marine Biology and Ecology, 222(1–2), 11–30. https://doi.org/10.1016/s0022-0981(97)00133-0
Letessier, T. B., Juhel, J., Vigliola, L., & Meeuwig, J. J. (2015). Low-cost small action cameras in stereo generates accurate underwater measurements of fish. Journal of Experimental Marine Biology and Ecology, 466, 120–126. https://doi.org/10.1016/j.jembe.2015.02.013
Lewis, S. M. (1986). The role of herbivorous fishes in the organization of a Caribbean reef community. Ecological Monographs, 56(3), 183–200. https://doi.org/10.2307/2937073
Lindfield, S., Harvey, E. S., McIlwain, J. L., & Halford, A. R. (2014). Silent fish surveys: bubble-free diving highlights inaccuracies associated with SCUBA-based surveys in heavily fished areas. Methods in Ecology and Evolution, 5(10), 1061–1069. https://doi.org/10.1111/2041-210x.12262
Lindfield, S. J., (2017). Palau’s reef fisheries: changes in size and spawning potential from past to present. Technical report, Coral Reef Research Foundation, 23pp.
Lindfield, S. J., Colin, P., Swords, J., Taylor, B., Prince, J. (2020). Estimating the size at maturity of fishes from stereo-video surveys of fish spawning aggregations. the Saltonstall-Kennedy Competitive Research Program (Award number: NA17NMF4270225), Coral Reef Research Foundation
Lokrantz, J., Nyström, M., Norström, A. V., Folke, C., & Cinner, J. E. (2009). Impacts of artisanal fishing on key functional groups and the potential vulnerability of coral reefs. Environmental Conservation, 36(4), 327–337. https://doi.org/10.1017/s0376892910000147
Luza, A. L., Quimbayo, J. P., Ferreira, C. E. L., Floeter, S. R., Francini-Filho, R. B., Bender, M. G., & Longo, G. O. (2022). Low functional vulnerability of fish assemblages to coral loss in Southwestern Atlantic marginal reefs. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-20919-9
Madin, E. M. P., Gaines, S. D., Madin, J. S., & Warner, R. R. (2010). Fishing indirectly structures macroalgal assemblages by altering herbivore behavior. The American Naturalist, 176(6), 785–801. https://doi.org/10.1086/657039
Madin, E. M. P., Gaines, S. D., & Warner, R. R. (2010). Field evidence for pervasive indirect effects of fishing on prey foraging behavior. Ecology, 91(12), 3563–3571. https://doi.org/10.1890/09-2174.1
Marshall, D. J., Gaines, S. D., Warner, R. R., Barneche, D. R., & Bode, M. F. (2019). Underestimating the benefits of marine protected areas for the replenishment of fished populations. Frontiers in Ecology and the Environment, 17(7), 407–413. https://doi.org/10.1002/fee.2075
Muller-Karanassos, C., Filous, A., Friedlander, A. M., Cuetos-Bueno, J., Gouezo, M., Lindfield, S. J., Nestor, V., Marino, L. L., Mereb, G., Olsudong, D., & Golbuu, Y. (2021). Effects of habitat, fishing, and fisheries management on reef fish populations in Palau. Fisheries Research, 241, 105996. https://doi.org/10.1016/j.fishres.2021.105996
Muller-Karanassos, C., Otto, E. I., Nestor, V., Olsudong, D., Bukurou, L. M., Mereb, G., Bukurrou, A. (2021). Fish populations in Palau in 2019 while still overexploited show signs of recovery. Technical Report 21-07, Palau International Coral Reef Center
Mumby, P. J. (2014). Stratifying herbivore fisheries by habitat to avoid ecosystem overfishing of coral reefs. Fish and Fisheries, 17(1), 266–278. https://doi.org/10.1111/faf.12078
Mumby, P. J., Dahlgren, C. P., Harborne, A. R., Kappel, C. V., Micheli, F., Brumbaugh, D. R., Holmes, K. E., Mendes, J. M., Broad, K., Sanchirico, J. N., Buch, K., Box, S., Stoffle, R. W., & Gill, A. B. (2006). Fishing, trophic cascades, and the process of grazing on coral reefs. Science, 311(5757), 98–101. https://doi.org/10.1126/science.1121129
Mumby, P. J., Hastings, A., & Edwards, H. J. (2007). Thresholds and the resilience of Caribbean coral reefs. Nature, 450(7166), 98–101. https://doi.org/10.1038/nature06252
Myers, R. A., & Worm, B. (2003). Rapid worldwide depletion of predatory fish communities. Nature, 423(6937), 280–283. https://doi.org/10.1038/nature01610
Nugues, M. M., Smith, G. W., Van Hooidonk, R. J., Seabra, M. I., & Bak, R. P. M. (2004). Algal contact as a trigger for coral disease. Ecology Letters, 7(10), 919–923. https://doi.org/10.1111/j.1461-0248.2004.00651.x
Pereira, P. H. C., Macedo, C. H. R., Lima, G. V., & De Jesus Benevides, L. (2020). Effects of depth on reef fish flight initiation distance: implications of deeper reefs conservation. Environmental Biology of Fishes, 103(10), 1247–1256. https://doi.org/10.1007/s10641-020-01017-z
Pereira, P. H. C., Ternes, M. L. F., De Anchieta C.C. Nunes, J., & Giglio, V. J. (2021). Overexploitation and behavioral changes of the largest South Atlantic parrotfish (Scarus trispinosus): Evidence from fishers’ knowledge. Biological Conservation, 254, 108940. https://doi.org/10.1016/j.biocon.2020.108940
Pfeiffer, W. (1977). The distribution of fright reaction and alarm substance cells in fishes. Copeia, 1977(4), 653. https://doi.org/10.2307/1443164
Reddy, S. M., Wentz, A., Aburto-Oropeza, O., Maxey, M., Nagavarapu, S., & Leslie, H. M. (2013). Evidence of market-driven size-selective fishing and the mediating effects of biological and institutional factors. Ecological Applications, 23(4), 726–741. https://doi.org/10.1890/12-1196.1
Rhoades, O. K., Lonhart, S. I., & Stachowicz, J. J. (2018). Fished species uniformly reduced escape behaviors in response to protection. Biological Conservation. https://doi.org/10.1016/j.biocon.2018.06.030
Shantz, A. A., Ladd, M. C., & Burkepile, D. E. (2020). Overfishing and the ecological impacts of extirpating large parrotfish from Caribbean coral reefs. Ecological Monographs, 90(2). https://doi.org/10.1002/ecm.1403
Skinner, C., Newman, S. P., Box, S. J., Narozanski, A., & Polunin, N. (2019). Chronic spearfishing may indirectly affect reef health through reductions in parrotfish bite rates. Journal of Fish Biology, 94(4), 585–594. https://doi.org/10.1111/jfb.13939
Slagsvold, T., & Wiebe, K. L. (2011). Social learning in birds and its role in shaping a foraging niche. Philosophical Transactions of the Royal Society B, 366(1567), 969–977. https://doi.org/10.1098/rstb.2010.0343
Smith, R. J. F. (1992). Alarm signals in fishes. Reviews in Fish Biology and Fisheries, 2(1), 33–63. https://doi.org/10.1007/bf00042916
Stobart, B., Warwick, R., Gonzalez, C., Mallol, S., Díaz, D., Reñones, O., & Goñi, R. (2009). Long-term and spillover effects of a marine protected area on an exploited fish community. Marine Ecology Progress Series, 384, 47–60. https://doi.org/10.3354/meps08007
Suboski, M. D., Bain, S., Carty, A. E., McQuoid, L. M., & Al, E. (1990). Alarm reaction in acquisition and social transmission of simulated-predator recognition by zebra danio fish (Brachydanio rerio). Journal of Comparative Psychology, 104(1), 101–112. https://doi.org/10.1037/0735-7036.104.1.101
Tanner, J. E. (1995). Competition between scleractinian corals and macroalgae: An experimental investigation of coral growth, survival and reproduction. Journal of Experimental Marine Biology and Ecology, 190(2), 151–168. https://doi.org/10.1016/0022-0981(95)00027-o
Taylor, B. M., Houk, P., Russ, G. R., & Choat, J. H. (2014). Life histories predict vulnerability to overexploitation in parrotfishes. Coral Reefs, 33(4), 869–878. https://doi.org/10.1007/s00338-014-1187-5
Taylor, B. M., Trip, E. D. L., & Choat, J. H. (2018). Dynamic Demography: Investigations of life-history variation in the parrotfishes. In CRC Press eBooks (pp. 69–98). https://doi.org/10.1201/9781315118079-4
Tetreault, I., & Ambrose, R. F. (2007). Temperate marine reserves enhance targeted but not untargeted fishes in multiple no-take MPAs. Ecological Applications, 17(8), 2251–2267. https://doi.org/10.1890/06-0161.1
Tran, D. S. C., Langel, K. A., Thomas, M., & Blumstein, D. T. (2016). Spearfishing-induced behavioral changes of an unharvested species inside and outside a marine protected area. Current Zoology, 62(1), 39–44. https://doi.org/10.1093/cz/zov006
Vallès, H., & Oxenford, H. A. (2014). Parrotfish size: A simple yet useful alternative indicator of fishing effects on Caribbean reefs? PLOS ONE, 9(1), e86291. https://doi.org/10.1371/journal.pone.0086291
Vo, A. E., Ashley, M., Dikou, A., & Newman, S. P. (2014). Fishery exploitation and stock assessment of the endangered Nassau grouper, Epinephelus striatus (Actinopterygii: Perciformes: Serranidae), in the Turks and Caicos Islands. Acta Ichthyologica Et Piscatoria, 44(2), 117–122. https://doi.org/10.3750/aip2014.44.2.05
Wilson, S. K., Depczynski, M., Fisher, R., Holmes, T. H., O’Leary, R. A., & Tinkler, P. (2010). Habitat associations of juvenile fish at Ningaloo Reef, Western Australia: The importance of coral and algae. PLOS ONE, 5(12), e15185. https://doi.org/10.1371/journal.pone.0015185
Wilson, S. K., Fisher, R., Pratchett, M. S., Graham, N. a. J., Dulvy, N. K., Turner, R., Cakacaka, A. L., & Polunin, N. V. C. (2010). Habitat degradation and fishing effects on the size structure of coral reef fish communities. Ecological Applications, 20(2), 442–451. https://doi.org/10.1890/08-2205.1
Xue L.N. (2013) Fishermen Served : The stories, catches and cooking of 15 Fishermen. Taiwan , Yuan-Liou Publishing Co., Ltd
Yang Q. M., Lai C. C., Hsu M .S., Huang X. H., & Wu L. J., (2013). Temporal and spatial distribution characteristics of fish caught by sampan fishing boats in Xiaoliuqiu, Taiwan. Journal of Taiwan Fisheries Research, 21 (1): 1-12, 2013
Liu-Chie Fisher Men’s association. http://www.liuchiu.org.tw/
The Fish Database of Taiwan as K. T. Shao Taiwan Fish Database. WWW Web electronic publication. http://fishdb.sinica.edu.tw, (2023-9-9) 
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code