Responsive image
博碩士論文 etd-0717123-140716 詳細資訊
Title page for etd-0717123-140716
論文名稱
Title
2021年夏季金門沿海底棲軟骨魚類群聚結構分析與鱝總目優勢物種生活史特徵
Demersal Chondrichthyan Community Structure and Life History Characteristics of the Dominant Species of Batoidea in the Coastal Water of Kinmen in Summer 2021
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2023-07-31
繳交日期
Date of Submission
2023-08-17
關鍵字
Keywords
生物多樣性熱點、軟骨魚綱、多樣性、板鰓亞綱、生殖生物學、拖網調查
Biodiversity hotspot, Chondrichthyes, Diversity, Elasmobranchii, Reproductive biology, Trawl survey
統計
Statistics
本論文已被瀏覽 63 次,被下載 4
The thesis/dissertation has been browsed 63 times, has been downloaded 4 times.
中文摘要
本論文運用多變量分析方法了解金門海域的底棲軟骨魚類的群聚結構及物種多樣性,並研究鱝總目優勢物種的生活史特徵。本論文分析的生物樣本是由「水試二號」試驗船於2021年8月14及15日利用網板拖網和法式橫桿拖網在金門島東方海域(KM1)及西南方海域(KM2)所採獲,並以形態鑑種方式共記錄軟骨魚類6目7科9屬14種(總個體數719尾)。不同網具採獲之軟骨魚類組成具有明顯差異。KM1海域共採獲軟骨魚類464尾,物種數為5目6科8屬10種,生物質量63.62 kg,占該海域採獲魚類生物量之52%。KM1海域軟骨魚類豐度最高的前三物種是日本單鰭電鱝Narke japonica (48.9%)、斑紋琵琶鱝Rhinobatos hynnicephalus (28.7%)和湯氏黃點鯆Platyrhina tangi (11.9%);單位面積生物量最高的前三物種分別是斑紋琵琶鱝(54.1%)、日本單鰭電鱝(13.7%)和湯氏黃點鯆(13.4%)。KM2海域共採獲軟骨魚類255尾,物種數為4目5科7屬10種,生物質量22.4 kg,占採獲魚類生物量之48%。KM2海域軟骨魚類豐度最高的前三物種是寬尾斜齒鯊Scoliodon laticaudus (71%)、斑紋琵琶鱝(13.3%)和條紋狗鯊hiloscyllium plagiosum (4.4%);單位面積生物量最高的前三物種分別是寬尾斜齒鯊(26.5%)、斑紋琵琶鱝(19.7%)和菱燕魟Gymnura zonura (19.7%)。KM1及KM2的軟骨魚類夏農-維納指數分別為1.23與1.21,均勻度指數為0.56和0.52,兩海域差異小,但優勢物種組成具有差異。KM1海域是日本單鰭電鱝、斑紋琵琶鱝和湯氏黃點鯆的產卵場所,並且發現有性別隔離現象。日本單鰭電鱝的胎仔數與孕仔母魚體盤寬間沒有呈現強烈的線性關係,但仍有正相關之趨勢;胎仔數介於1至8尾,平均(±1SD)為3.69 (±1.92)尾。KM2海域有已懷孕的中華黃點鯆Platyrhina sinensis、斑紋琵琶鱝和尖嘴魟Telatrygon zugei,以及未成熟的鱝總目物種。綜上結果顯示夏季金門海域為上述優勢軟骨魚類的關鍵棲地(產卵場及育幼場),建議持續投入優勢物種生活史研究,以建立完整的物種生活史資訊,用以擬訂保育策略。
Abstract
This thesis aims to understand the community structure and diversity of demersal chondrichthyans in the coastal waters of Kinmen Island and the life history characteristics of dominant batoid species. The chondrichthyan specimens analyzed in this thesis were collected by both otter trawling and beam trawling onboard R/V Fishery Researcher 2 in two offshore areas (i.e., KM1 located off the east coast; KM2 located off the southwest coast) of Kinmen Island during a research expedition conducted on August 14th–15th, 2021. The obtained chondrichthyan specimens (n = 719) were morphologically identified as belonging to 14 species, 9 genera, 7 families, and 6 orders. The species composition of chondrichthyans obtained by otter trawling differed from that obtained by beam trawling. In KM1, the obtained chondrichthyan specimens (n = 464) were identified as belonging to 10 species, 8 genera, 6 families, and 5 orders with a biomass of 63.62 kg, accounting for 52% of the total biomass of fish catches (including bony fishes). The top three dominant chondrichthyan species by abundance in KM1 were Narke japonica (48.9%), Rhinobatos hynnicephalus (28.7%), and Platyrhina tangi (11.9%), whereas the top three dominant species by biomass were R. hynnicephalus (54.1%), N. japonica (13.7%), and P. tangi (13.4%). In KM2, a total of 255 chondrichthyan specimens were identified as belonging to 10 species, 7 genera, 5 families, 4 orders with a biomass of 22.4 kg, accounting for 48% of the total biomass of fish catches. The top three dominant species by abundance in KM2 were Scoliodon laticaudus (71%), R. hynnicephalus (13.3%), and Chiloscyllium plagiosum (4.4%), while the top three dominant species by biomass were S. laticaudus (26.5%), R. hynnicephalus (19.7%), and Gymnura zonura (19.7%). The Shannon-Wiener index (1.23) and Pielou’s evenness index (0.56) calculated for KM1 chondrichthyan community were close to the indices (1.21 & 0.52) calculated for KM2 chondrichthyan community; nonetheless, these two sampling areas demonstrated differences in dominant chondrichthyan species. Moreover, KM1 was found to be the spawning and nursery grounds for N. japonica, R. hynnicephalus, and P. tangi, and these species demonstrated sexual segregation. Additionally, the litter size for pregnant N. japonica ranged from 1 to 8 pups, with a mean (±1SD) of 3.69 (±1.9) pups. Furthermore, pregnant Platyrhina sinensis, R. hynnicephalus, and Telatrygon zugei and other immature batoid species were found in KM2. These results suggest that the study areas (KM1 & KM2) off Kinmen are the key habitat (i.e., spawning and nursery grounds) for those dominant chondrichthyan species presented above and that efforts on field research, particularly on the life history characteristics of dominant batoid species, should be continued to establish comprehensive information on species life histories, which can be used as a reference for formulating conservation strategies.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
中文摘要 iv
Abstract v
目錄 vii
圖次 ix
表次 xi
第一章、前言 1
1.1金門海域生態與環境概述 1
1.2軟骨魚類的生態保育意義 3
1.3研究動機與目的 4
第二章、材料與方法 6
2.1魚類樣本及水文水質資料來源 6
2.2種類鑑定及形質測量 6
2.3多樣性指數 7
2.4群聚結構分析 8
2.5生活史階段判定 10
第三章、結果 13
3.1水文環境 13
3.2 KM1及KM2軟骨魚類組成、豐度及單位面積生物量 13
3.3多樣性指數 14
3.4群聚分析 14
3.5鱝總目物種形質分析與生活史特徵 15
第四章、討論 18
4.1水文環境 18
4.2軟骨魚類的物種多樣性 18
4.3群聚結構 20
4.4鱝總目優勢物種的生活史特徵 20
4.5 IUCN全球紅皮書類別 24
4.6抽砂對海域生態環境影響 24
第五章、結論 26
參考文獻 27
附錄 68
附錄1、本研究軟骨魚類物種名錄 68
附錄2、均勻投影逼近法(UMAP)模型CODE碼 82









參考文獻 References
吳正庭(2022年8月10日)。抓到可罰1億!海巡澄清:金門海域4年未見中國船越界採砂。自由時報。https://news.ltn.com.tw/news/society/breakingnews/4021489
李明安、陳玟妤、陳智銘、嚴子傑(2010)。金門海域仔稚魚生物相調查。金門縣水產試驗所。
杜建國、劉正華、餘興光、許章程、胡文佳、陳彬、馬志遠、林金蘭(2012)。九龍江口魚類多樣性和營養級分析。熱帶海洋學報,31(6),76−82。
林小雯(2008)。臺灣東北部海域日本電鱝之生殖生物學研究。﹝未出版之碩士論文﹞國立臺灣海洋大學環境生物與漁業科學研究所。
林龍山、張靜、戴天元、李淵、王良明、宋普慶(2016)。臺灣海峽西部海域游泳動物多樣性。廈門大學出版社。中國廈門。
柯逢樟、陳朝金(1996)。金門地區周邊海域之海潮流初探。金門縣水產試驗所。
高瑞新(2020年8月13日)。大陸船舶盜採海砂對金廈海域影響之研究—海域空間規劃之構想(科技部補助專題研究計畫報告)。國立金門大學海洋與邊境管理學系。
張清榕、楊聖雲(2005)。中國軟骨魚類種類 、地理分佈及資源。廈門大學學報,44(B06),207–211。
張寶仁、陳朝金(1995)。金門地區沿岸海域水文基礎調查。金門縣水產試驗所。
張寶仁、陳朝金(1996)。金門地區南海域水文調查(Ⅱ)。金門縣水產試驗所。
張懿(2019)。經濟魚種調查暨海洋牧場示範區可行性先期評估。金門縣水產試驗所。
陳良德、黃錫安(2001)。金門傳統拖網漁場底魚資源調查(三)。金門縣水產試驗所。
陳良德、翁自保(2002)。金門傳統拖網漁場底魚資源調查(四)。金門縣水產試驗所。
陳衍昌、張睿昇、徐振豐、周立進(2013)。金門海域經濟海藻調查與生物技術保種之可行性評估。金門水產試驗所。
陳鎮東、陳朝金、王巧萍、王冰潔(1994)。金門地區沿岸水質現況。金門縣水產試驗所。
陳鎮東、陳朝金、王冰潔、林志明(1995)。金門週邊海域水質 金門週邊海域水質、水文與沈積物調查 、水文與沈積物調查──(Ⅰ)。金門縣水產試驗所。
黃春蘭(2013)。金門海域漁業生態環境水質與生物體重金屬監測計畫。金門縣水產試驗所。
黃偉柏(2014)。金門沿海淤泥沉積對牡蠣養殖生產區之影響初步評析。
黃榮富(2008)。2008年金門沿海域經濟仔稚魚生物相調查。金門縣水產試驗所。
黃榮富(2009)。2009年金門南海域魚類資源及浯江溪口等潮間帶生物多樣性調查。金門縣水產試驗所。
劉金海、楊聖雲、陳明茹(2011)。閩南近海中國團扇鰩年齡與生長研究。海洋漁業,33(2)。
劉敏、陳驍、楊聖雲(2013)。中國福建南部海洋魚類圖鑒(第一卷)。海洋出版社。
蔣新花、謝仰傑、黃良敏、李軍、張雅芝(2010)。閩江口及附近海域和廈門沿岸海域 軟骨魚類種類組成和數量的時空分佈。集美大學學報,15(6)。
謝孜齊(2011)。臺灣東北海域湯氏黃點鯆年齡成長與生殖生物學研究。﹝未出版之碩士論文﹞。國立臺灣海洋大學環境生物與漁業科學學系。
顏筠蓁 (2018)。臺灣西南海域產何氏甕鰩(Okamejei hollandi)之生殖生物學研究。﹝未出版之碩士論文﹞。國立高雄海洋科技大學漁業生產與管理研究所。

魏觀淵、黃桂芳(2021)。廈門灣春、秋季魚類群落結構及其多樣性。中國水產科學,28(8),1060–1068。
Ali, A. (2013). Field guide to look-alike sharks and rays species of the Southeast Asian region.
Alkusairy, H., & Saad, A. (2017). Some morphological and biological aspects of longnosed skate, Dipturus oxyrinchus (Elasmobranchii: Rajiformes: Rajidae), in Syrian marine waters (eastern Mediterranean). Acta Ichthyologica et Piscatoria, 47(4), 371–383. https://doi.org/10.3750/aiep/02283
Amanda Jhu-Xhin Leung, Amy Yee-Hui Then, & Loh, K.-H. (2022). Reproductive biology, length‐weight relationship and diet of co‐occurring butterfly rays, Gymnura poecilura and Gymnura zonura , in Malaysian waters. Journal of Fish Biology, 102(3), 564–574. https://doi.org/10.1111/jfb.15288
Armstrong, G., Martino, C., Rahman, G., Gonzalez, A., Vázquez-Baeza, Y., Mishne, G., & Knight, R. (2021). Uniform Manifold Approximation and Projection (UMAP) Reveals Composite Patterns and Resolves Visualization Artifacts in Microbiome Data. MSystems, 6(5). https://doi.org/10.1128/msystems.00691-21
Ayesha, S., Hanif, M. K., & Talib, R. (2020). Overview and comparative study of dimensionality reduction techniques for high dimensional data. Information Fusion, 59, 44–58. https://doi.org/10.1016/j.inffus.2020.01.005
Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., & Zdravkovic, V. (2008). Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences, 105(4), 1232–1237. https://doi.org/10.1073/pnas.0711437105
Barbini, S. A., Sabadin, D. E., & Lucifora, L. O. (2018). Comparative analysis of feeding habits and dietary niche breadth in skates: the importance of body size, snout length, and depth. Reviews in Fish Biology and Fisheries, 28(3), 625–636. https://doi.org/10.1007/s11160-018-9522-5
Barletta, M., Cysneiros, F. J. A., & Lima, A. R. A. (2016). Effects of dredging operations on the demersal fish fauna of a South American tropical-subtropical transition estuary. Journal of Fish Biology, 89(1), 890–920. https://doi.org/10.1111/jfb.12999
Bilkovic, D. M. (2010). Response of tidal creek fish communities to dredging and coastal development pressures in a shallow-water estuary. Estuaries and Coasts, 34(1), 129–147. https://doi.org/10.1007/s12237-010-9334-x
Bishop, J. M., Moore, A. B. M., Alsaffar, A. H., & Abdul Ghaffar, A. R. (2015). The distribution, diversity and abundance of elasmobranch fishes in a modified subtropical estuarine system in Kuwait. Journal of Applied Ichthyology, 32(1), 75–82. https://doi.org/10.1111/jai.12980
Blonder, B., Lamanna, C., Violle, C., & Enquist, B. J. (2014). The n-dimensional hypervolume. Global Ecology and Biogeography, 23(5), 595–609. https://doi.org/10.1111/geb.12146
Borland, H. P., Gilby, B. L., Henderson, C. J., Connolly, R. M., Gorissen, B., Ortodossi, N. L., Rummell, A. J., Pittman, S. J., Sheaves, M., & Olds, A. D. (2022). Dredging transforms the seafloor and enhances functional diversity in urban seascapes. Science of the Total Environment, 831, 154811. https://doi.org/10.1016/j.scitotenv.2022.154811
Boyd, S. E., & Rees, H. L. (2003). An examination of the spatial scale of impact on the marine benthos arising from marine aggregate extraction in the central English Channel. Estuarine, Coastal and Shelf Science, 57(1-2), 1–16. https://doi.org/10.1016/s0272-7714(02)00313-x
Boyd, S. E., Limpenny, D. S., Rees, H. L., & Cooper, K. M. (2005). The effects of marine sand and gravel extraction on the macrobenthos at a commercial dredging site (results 6 years post-dredging). ICES Journal of Marine Science, 62(2), 145–162. https://doi.org/10.1016/j.icesjms.2004.11.014
Campello, R. J., Moulavi, D., & Sander, J. (2013). Density-based clustering based on hierarchical density estimates. In Pacific-Asia conference on knowledge discovery and data mining (pp. 160-172). Berlin, Heidelberg: Springer Berlin Heidelberg.
Cavanagh, R. D., Camhi, M., Burgess, G. H., Cailliet, G. M., Fordham, S. V., Simpfendorfer, C. A., Musick, J. A., Fowler, S. L., & International Union For Conservation Of Nature And Natural Resources. (2005). Sharks, rays and chimaeras : the status of the Chondrichthyan fishes : status survey.
Clarke, K.R. and Gorley, R.N. (2015) PRIMER v7: User Manual/Tutorial. PRIMER-EPlymouth.
de Jong, M. F., Borsje, B. W., Baptist, M. J., van der Wal, J. T., Lindeboom, H. J., & Hoekstra, P. (2016). Ecosystem-based design rules for marine sand extraction sites. Ecological Engineering, 87, 271–280. https://doi.org/10.1016/j.ecoleng.2015.11.053
Desprez, M. (2000). Physical and biological impact of marine aggregate extraction along the French coast of the Eastern English Channel: short- and long-term post-dredging restoration. ICES Journal of Marine Science, 57(5), 1428–1438. https://doi.org/10.1006/jmsc.2000.0926
Dulvy, N. K., Fowler, S. L., Musick, J. A., Cavanagh, R. D., Kyne, P. M., Harrison, L. R., Carlson, J. K., Davidson, L. N., Fordham, S. V., Francis, M. P., Pollock, C. M., Simpfendorfer, C. A., Burgess, G. H., Carpenter, K. E., Compagno, L. J., Ebert, D. A., Gibson, C., Heupel, M. R., Livingstone, S. R., & Sanciangco, J. C. (2014). Extinction risk and conservation of the world’s sharks and rays. eLife, 3. https://doi.org/10.7554/elife.00590
Field, I. C., Meekan, M. G., Buckworth, R. C., & Bradshaw, C. J. A. (2009). Chapter 4 Susceptibility of Sharks, Rays and Chimaeras to Global Extinction. Advances in Marine Biology, 275–363. https://doi.org/10.1016/s0065-2881(09)56004-x
Flowers, K. I., Heithaus, M. R., & Papastamatiou, Y. P. (2020). Buried in the sand: Uncovering the ecological roles and importance of rays. Fish and Fisheries. https://doi.org/10.1111/faf.12508
Fontanella, J. E., Fish, F. E., Barchi, E. I., Campbell-Malone, R., Nichols, R. H., DiNenno, N. K., & Beneski, J. T. (2013). Two- and three-dimensional geometries of batoids in relation to locomotor mode. Journal of Experimental Marine Biology and Ecology, 446, 273–281. https://doi.org/10.1016/j.jembe.2013.05.016
Frisk, M. G., Miller, T. J., & Fogarty, M. J. (2001). Estimation and analysis of biological parameters in elasmobranch fishes: a comparative life history study. Canadian Journal of Fisheries and Aquatic Sciences, 58(5), 969–981. https://doi.org/10.1139/f01-051
Froese, R., & Pauly, D. Editors. 2023. FishBase. World Wide Web electronic publication. www.fishbase.org, version (02/2023).
Furumitsu, K., Wyffels, J. T., & Yamaguchi, A. (2019). Reproduction and embryonic development of the red stingray Hemitrygon akajei from Ariake Bay, Japan. Ichthyological Research, 66(4), 419–436. https://doi.org/10.1007/s10228-019-00687-9
Gao, Y., Jia, J., Lu, Y., Sun, K., Wang, J., & Wang, S. (2022). Carbon transportation, transformation, and sedimentation processes at the land-river-estuary continuum. Fundamental Research. https://doi.org/10.1016/j.fmre.2022.07.007
Goitein, R., Torres, F. S., & Signorini, C. E. (2008). Morphological aspects related to feeding of two marine skates Narcine brasiliensis Olfers and Rhinobatos horkelli Müller & Henle. Acta Scientiarum. Biological Sciences, 20, 165. https://doi.org/10.4025/actascibiolsci.v20i0.4468
Grady, J. M., Maitner, B. S., Winter, A. S., Kaschner, K., Tittensor, D. P., Record, S., Smith, F. A., Wilson, A. M., Dell, A. I., Zarnetske, P. L., Wearing, H. J., Alfaro, B., & Brown, J. H. (2019). Metabolic asymmetry and the global diversity of marine predators. Science, 363(6425), eaat4220. https://doi.org/10.1126/science.aat4220
Hwang, S. W., Lee, H. G., Choi, K. H., Kim, C. K., & Lee, T. W. (2014). Impact of Sand Extraction on Fish Assemblages in Gyeonggi Bay, Korea. Journal of Coastal Research, 298, 1251–1259. https://doi.org/10.2112/jcoastres-d-12-00145.1
ICES. 2020. Workshop on Elasmobranchs maturity (WKSEL3; outputs from 2018 meeting). ICES Scientific Reports. 2:90. 103 pp. http://doi.org/10.17895/ices.pub.7501
Jabado, R. W. (2018). The fate of the most threatened order of elasmobranchs: Shark-like batoids (Rhinopristiformes) in the Arabian Sea and adjacent waters. Fisheries Research, 204, 448–457. https://doi.org/10.1016/j.fishres.2018.03.022
Jirik, K. E., & Lowe, C. G. (2012). An elasmobranch maternity ward: female round stingrays Urobatis halleri use warm, restored estuarine habitat during gestation. Journal of Fish Biology, 80(5), 1227–1245. https://doi.org/10.1111/j.1095-8649.2011.03208.x
Jordan, L. K. (2008). Comparative morphology of stingray lateral line canal and electrosensory systems. Journal of Morphology, 269(11), 1325–1339. https://doi.org/10.1002/jmor.10660
Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x
Jost, L. (2010). The Relation between Evenness and Diversity. Diversity, 2(2), 207–232. https://doi.org/10.3390/d2020207
Kume, G., Furumitsu, K., Tanaka, S., & Yamaguchi, A. (2009). Reproductive biology of the guitarfish Rhinobatos hynnicephalus (Batoidea: Rhinobatidae) in Ariake Bay, Japan. Environmental Biology of Fishes, 85(4), 289–298. https://doi.org/10.1007/s10641-009-9487-2
Kume, G., Furumitsu, K., & yamaguchi, A. (2008). Age, growth and age at sexual maturity of fan ray Platyrhina sinensis(Batoidea: Platyrhinidae) in Ariake Bay, Japan. Fisheries Science, 74(4), 736–742. https://doi.org/10.1111/j.1444-2906.2008.01584.x
Last, P. R. (2016). Rays of the world. Comstock Publishing Associates, a division of Cornell University Press ; CSIRO Publishing.
Last, P. R., Naylor, G. J. P., & Manjaji-Matsumoto, B. M. (2016a). A revised classification of the family Dasyatidae (Chondrichthyes: Myliobatiformes) based on new morphological and molecular insights. Zootaxa, 4139(3), 345. https://doi.org/10.11646/zootaxa.4139.3.2
Last, P. R., White, W. T., & Naylor, G. (2016b). Three new stingrays (Myliobatiformes: Dasyatidae) from the Indo–West Pacific. Zootaxa, 4147(4), 377. https://doi.org/10.11646/zootaxa.4147.4.2
Letten, A. D. (2021) Coexistence holes fill a gap in community assembly theory. Nature Ecology & Evolution, 5, 1062–1063. https://doi.org/10.1038/s41559-021-01461-9
Loia, M., La Valle, P., Lattanzi, L., La Porta, B., Targusi, M., & Nicoletti, L. (2020). Recolonization patterns of benthic assemblages after relict sand dredging in the central Tyrrhenian sea. Marine Ecology, 41(6). https://doi.org/10.1111/maec.12615
Martin, r. Aidan. (2005). conservation of freshwater and euryhaline elasmobranchs: a review. Journal of the Marine Biological Association of the United Kingdom, 85(5), 1049–1073. https://doi.org/10.1017/s0025315405012105
McInnes, L., Healy, J., & Melville, J. (2018). UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. ArXiv.org. https://arxiv.org/abs/1802.03426
Menon, M., Maheswarudu, G., Sree Ramulu, K., & Kizhakudan, S. J. (2020). Reproductive biology and diet of the longtail butterfly ray Gymnura poecilura (Shaw, 1804) along western Bay of Bengal. Journal of the Marine Biological Association of the United Kingdom, 100(3), 461–470. https://doi.org/10.1017/s0025315420000259
Milošević, D., Medeiros, A. S., Stojković Piperac, M., Cvijanović, D., Soininen, J., Milosavljević, A., & Predić, B. (2022). The application of Uniform Manifold Approximation and Projection (UMAP) for unconstrained ordination and classification of biological indicators in aquatic ecology. Science of the Total Environment, 815, 152365. https://doi.org/10.1016/j.scitotenv.2021.152365
Nowicki, R. J., Thomson, J. A., Fourqurean, J. W., Wirsing, A. J., & Heithaus, M. R. (2021). Loss of predation risk from apex predators can exacerbate marine tropicalization caused by extreme climatic events. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.13424
Ogle, D. H. (2018). Introductory Fisheries Analyses with R. CRC Press.
Pacoureau, N., Rigby, C. L., Kyne, P. M., Sherley, R. B., Winker, H., Carlson, J. K., Fordham, S. V., Barreto, R., Fernando, D., Francis, M. P., Jabado, R. W., Herman, K. B., Liu, K.-M., Marshall, A. D., Pollom, R. A., Romanov, E. V., Simpfendorfer, C. A., Yin, J. S., Kindsvater, H. K., & Dulvy, N. K. (2021). Half a century of global decline in oceanic sharks and rays. Nature, 589(7843), 567–571. https://doi.org/10.1038/s41586-020-03173-9
Pacunski R, Lowry D, Hillier L, & Blaine J (2016) A comparison of groundfish species composition, abundance, and density estimates derived from a scientific bottom-trawl and a small remotely-operated vehicle for trawable habitats. Washington Department of Fish and Wildlife Fish Program Science Division, State of Washington.
R Core Team (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Ravali, V., Sujatha, K., & Deepti, V. A. I. (2018). Length-weight relationship, growth and reproductive biology of Narke impennis (Annandale, 1909) (Pisces: Narkidae) of Visakhapatnam coast, Western Bay of Bengal, India. Journal of the Marine Biological Association of India, 60(2), 75–85. https://doi.org/10.6024/jmbai.2018.60.2.2022-11
Raje, S G, Thakurdas, & Sundaram, Sujit (2012) Relationship between body size and certain breeding behavior in selected species of Elasmobranchs off Mumbai. Journal of Marine Biological Association of India, 54 (2). pp. 85-89.
Rehitha, T. V., Ullas, N., Vineetha, G., Benny, P. Y., Madhu, N. V., & Revichandran, C. (2017). Impact of maintenance dredging on macrobenthic community structure of a tropical estuary. Ocean & Coastal Management, 144, 71–82. https://doi.org/10.1016/j.ocecoaman.2017.04.020
Ricotta, C., & Podani, J. (2017). On some properties of the Bray-Curtis dissimilarity and their ecological meaning. Ecological Complexity, 31, 201–205. https://doi.org/10.1016/j.ecocom.2017.07.003
Rigby, C.L., Bin Ali, A., Chen, X., Derrick, D., Dharmadi, Ebert, D.A., Fahmi, Gautama, D.A., Herman, K., Ho, H., Hsu, H., Krajangdara, T., Seyha, L., Sianipar, A., Vo, V.Q., Yuneni, R.R. & Zhang, J. 2020a. Hemitrygon bennetti. The IUCN Red List of Threatened Species 2020: e.T161533A104115348. https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T161533A104115348.en
Rigby, C.L., Bin Ali, A., Bineesh, K.K., Derrick, D., Dharmadi, Ebert, D.A., Fahmi, Fernando, D., Gautama, D.A., Haque, A.B., Herman, K., Maung, A., Vo, V.Q., Sianipar, A., Tanay, D., Utzurrum, J.A.T. & Yuneni, R.R. 2020b. Okamejei hollandi. The IUCN Red List of Threatened Species 2020: e.T161532A124501466. https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T161532A124501466.en
Rigby, C.L., Chen, X., Derrick, D., Ebert, D.A., Herman, K., Ho, H., Hsu, H., Seyha, L., Vo, V.Q. & Zhang, J. 2020c. Hemitrygon navarrae. The IUCN Red List of Threatened Species 2020c: e.T161741A124536575. https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T161741A124536575.en
Rigby, C.L., Chen, X., Ebert, D.A., Herman, K., Ho, H., Hsu, H. & Zhang, J. 2020d. Rhinobatos hynnicephalus. The IUCN Red List of Threatened Species 2020: e.T60167A124446775.
https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T60167A124446775.en
Rigby, C.L., Chen, X., Ebert, D.A., Herman, K., Ho, H., Hsu, H. & Zhang, J. 2021a. Narke japonica. The IUCN Red List of Threatened Species: e.T201629258A201629674.
https://doi.org/10.2305/IUCN.UK.2021-2.RLTS.T201629258A201629674.en
Rigby, C.L., Chen, X., Ebert, D.A., Herman, K., Ho, H., Hsu, H. & Zhang, J. 2021b. Platyrhina sinensis. The IUCN Red List of Threatened Species 2021: e.T169236406A124511558.
https://dx.doi.org/10.2305/IUCN.UK.2021-1.RLTS.T169236406A124511558.en
Rigby, C.L., Chen, X., Ebert, D.A., Herman, K., Ho, H., Hsu, H. & Zhang, J. 2021c. Platyrhina tangi. The IUCN Red List of Threatened Species 2021: e.T169234885A169234948.
Rigby, C.L., Chen, X., Ebert, D.A., Herman, K., Ho, H., Hsu, H. & Zhang, J. 2021d. Telatrygon zugei. The IUCN Red List of Threatened Species 2021: e.T104085094A104086760.
https://dx.doi.org/10.2305/IUCN.UK.2021-2.RLTS.T104085094A104086760.en
Rigby, C.L., Walls, R.H.L., Derrick, D., Dyldin, Y.V., Herman, K., Ishihara, H., Jeong, C.-H., Semba, Y., Tanaka, S., Volvenko, I.V. & Yamaguchi, A. 2021e. Gymnura japonica. The IUCN Red List of Threatened Species 2021: e.T161630A124518082.
https://dx.doi.org/10.2305/IUCN.UK.2021- 1.RLTS.T161630A124518082.en
Rigby, C.L., Walls, R.H.L., Derrick, D., Dyldin, Y.V., Herman, K., Ishihara, H., Jeong, C.-H., Semba, Y., Tanaka, S., Volvenko, I.V. & Yamaguchi, A. 2021. Hemitrygon akajei. The IUCN Red List of Threatened Species 2021f: e.T60148A104113935. https://dx.doi.org/10.2305/IUCN.UK.2021- 1.RLTS.T60148A104113935.en
Rigby, C.L., Walls, R.H.L., Derrick, D., Dyldin, Y.V., Herman, K., Ishihara, H., Jeong, C.-H., Semba, Y., Tanaka, S., Volvenko, I.V. & Yamaguchi, A. 2021g. Telatrygon acutirostra. The IUCN Red List of Threatened Species 2021: e.T60147A124444795.
https://dx.doi.org/10.2305/IUCN.UK.2021- 1.RLTS.T60147A124444795.en
Robbins, R. L. (2007). Environmental variables affecting the sexual segregation of great white sharks Carcharodon carcharias at the Neptune Islands South Australia. Journal of Fish Biology, 70(5), 1350–1364. https://doi.org/10.1111/j.1095-8649.2007.01414.x
Sainburg, T., Thielk, M., & Gentner, T. Q. (2020). Finding, visualizing, and quantifying latent structure across diverse animal vocal repertoires. 16(10), e1008228–e1008228. https://doi.org/10.1371/journal.pcbi.1008228
Schlaff, A. M., Heupel, M. R., & Simpfendorfer, C. A. (2014). Influence of environmental factors on shark and ray movement, behaviour and habitat use: a review. Reviews in Fish Biology and Fisheries, 24(4), 1089–1103. https://doi.org/10.1007/s11160-014-9364-8
Sheaves, M., Baker, R., Nagelkerken, I., & Connolly, R. M. (2014). True Value of Estuarine and Coastal Nurseries for Fish: Incorporating Complexity and Dynamics. Estuaries and Coasts, 38(2), 401–414. https://doi.org/10.1007/s12237-014-9846-x
Sherman, C.S., Bin Ali, A., Bineesh, K.K., Derrick, D., Dharmadi, Fahmi, Fernando, D., Haque, A.B., Maung, A., Seyha, L., Tanay, D., Utzurrum, J.A.T., Vo, V.Q. & Yuneni, R.R. 2021. Gymnura zonura. The IUCN Red List of Threatened Species 2021: e.T60113A124439689.
https://dx.doi.org/10.2305/IUCN.UK.2021- 1.RLTS.T60113A124439689.en
Thompson, L., Maiti, K., White, J. R., DuFore, C. M., & Liu, H. (2021). The impact of recently excavated dredge pits on coastal hypoxia in the northern Gulf of Mexico shelf. Marine Environmental Research, 163, 105199. https://doi.org/10.1016/j.marenvres.2020.105199
Topaz, C. M., Ziegelmeier, L., & Halverson, T. (2015). Topological Data Analysis of Biological Aggregation Models. PLOS ONE, 10(5), e0126383. https://doi.org/10.1371/journal.pone.0126383
Vandalfsen, J., Essink, K., Toxvigmadsen, H., Birklund, J., Romero, J., & Manzanera, M. (2000). Differential response of macrozoobenthos to marine sand extraction in the North Sea and the Western Mediterranean. ICES Journal of Marine Science, 57(5), 1439–1445. https://doi.org/10.1006/jmsc.2000.0919
Wagiyo, K., Kembaren, D. D., Noegroho, T., Nugraha, B., Hufiadi, N., Chodriyah, U., & Prihatiningsih. (2023). Life history (length-weight relationship, conditional factors, reproductive aspects), stomach contents and nursery ground of stingray in the Arafura Sea. IOP Conf. Ser.: Earth Environ. Sci, 1163(1), 012009. https://doi.org/10.1088/1755-1315/1163/1/012009
Waye-Barker, G. A., McIlwaine, P., Lozach, S., & Cooper, K. M. (2015). The effects of marine sand and gravel extraction on the sediment composition and macrofaunal community of a commercial dredging site (15 years post-dredging). Marine Pollution Bulletin, 99(1–2), 207–215. https://doi.org/10.1016/j.marpolbul.2015.07.024
Wenger, A. S., Harvey, E., Wilson, S., Rawson, C., Newman, S. J., Clarke, D., Saunders, B. J., Browne, N., Travers, M. J., Mcilwain, J. L., Erftemeijer, P. L. A., Hobbs, J.-P. A., Mclean, D., Depczynski, M., & Evans, R. D. (2017). A critical analysis of the direct effects of dredging on fish. Fish and Fisheries, 18(5), 967–985. https://doi.org/10.1111/faf.12218
Yamaguchi, A., & Kume, G. (2008). Reproductive biology of the fanray, Platyrhina sinensis (Batoidea: Platyrhinidae) in Ariake Bay, Japan. Ichthyological Research, 56(2), 133–139. https://doi.org/10.1007/s10228-008-0078-6
Yamaguchi, A., Furumitsu, K., Tanaka, S., & Kume, G. (2011). Dietary habits of the fanray Platyrhina tangi (Batoidea: Platyrhinidae) in Ariake Bay, Japan. Environmental Biology of Fishes, 95(1), 147–154. https://doi.org/10.1007/s10641-011-9792-4
Zheng, W., Qiu, S. (1993). Reproductive biology of the guitarfish, Rhinobatos hynnicephalus . In: Demski, L.S., Wourms, J.P. (eds) The reproduction and development of sharks, skates, rays and ratfishes. Developments in environmental biology of fishes, vol 14. Springer, Dordrecht.
https://doi.org/10.1007/978-94-017-3450-9_8
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code