論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
基於因子分析的加密貨幣市場風險評估與投資策略研究 Cryptocurrency Market Risk Assessment and Investment Strategy Research Based on Factor Analysis |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
120 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-06-28 |
繳交日期 Date of Submission |
2023-08-17 |
關鍵字 Keywords |
多因子模型、加密貨幣因子分析、投資組合管理、核心-衛星投資策略、風險平價策略 Multi-factor Model, Cryptocurrency Factor Analysis, Portfolio Management, Core-Satellite Investment Strategy, Risk Parity Strategy |
||
統計 Statistics |
本論文已被瀏覽 138 次,被下載 10 次 The thesis/dissertation has been browsed 138 times, has been downloaded 10 times. |
中文摘要 |
從2020年疫情開始,美聯儲的量化寬鬆政策以及投資者的低成本資金引爆了股市與加密貨幣投資熱潮。然而,隨著2022年通膨上升,美聯儲開始進行連續升息,導致各種資產面臨價格下跌的壓力。特別是加密貨幣市場,經歷一系列黑天鵝事件後,市值蒸發了約1.5兆美元。至2023年,儘管通膨得到控制,市場活動逐步恢復,投資者對加密貨幣市場的疑慮依然存在。 為了幫助投資者理解加密貨幣市場的風險和特性,本研究旨在探討加密貨幣報酬率的共性,以協助投資者識別具有特定特徵的加密貨幣所帶來的潛在投資機會。我們利用Barra's EUE3模型建立了多因子風險模型,考慮了規模、動能、波動性、流動性和網絡中心性等因素,並根據CoinDesk Indices的數位資產分類標準,分析了2017年至2022年的所有合格幣種的報酬率,以評估投資組合風險和驗證模型的風險預測能力。結果顯示,市值加權模型在預測報酬率方面的準確度接近90%,確認了多因子模型能夠有效把握加密貨幣市場風險。 在實際運用加密貨幣因子投組上,我們採用的是核心-衛星投資策略,以期在控制風險的同時,創造更好的績效。我們發現規模較小、流動性較差和中位數網絡中心性的加密貨幣組成的多因子組合表現最佳,Sharpe Ratio 達到 2.5。總的來說,我們透過這樣的全面方法,期望能深入瞭解加密貨幣市場的風險,並探討如何利用風險因子來建立成功的投資策略。 |
Abstract |
Since the 2020 pandemic, the Federal Reserve's quantitative easing and investors' low-cost funds spurred a surge in stocks and cryptocurrency. However, 2022's inflation rise and subsequent interest rate hikes led to decreased asset values, notably causing a loss of about $1.5 trillion in cryptocurrency market value. This research aims to help investors understand the risks and features of the cryptocurrency market. We used Barra's EUE3 model to construct a multi-factor risk model considering factors such as size, momentum, volatility, liquidity, and network centrality. We analyzed the returns of eligible cryptocurrencies from 2017 to 2022, finding that the market value-weighted model accurately predicted returns by nearly 90%. In practice, we implemented a core-satellite investment strategy and found that cryptocurrencies with smaller size, poorer liquidity, and median network centrality performed best. Through this approach, we aim to comprehend cryptocurrency market risks and establish effective investment strategies. |
目次 Table of Contents |
論文審定書 i 摘要 ii Abstract iii Content iv List of Figures v List of Tables viii I. Introduction 1 1.1 Background and Motivation for Research 1 1.2 Research Purpose 6 II. Literature Review 8 2.1 Modern Portfolio Theory and Multi-Factor Model 8 2.2 Factors of Cryptocurrency 10 2.3 Introduction to Risk Parity Portfolio 15 III. Research Methodology 18 3.1 Empirical Process 18 3.2 Estimation Universe (ESTU) and Research Period 19 3.3 Definition and Calculation of Factor Exposures 21 3.4 Multi-risk factor Model Construction 25 3.5 The Risk Parity Portfolio 36 3.6 Core-Satellite Strategy 40 IV. Empirical Results 44 4.1 Descriptive statistics of Data and Factors 44 4.2 Forecasting Accuracy Test Results 62 4.3 Performance of Core-Satellite Portfolios 68 V. Conclusions and Suggestions 98 References 103 Appendix 107 |
參考文獻 References |
Asness, C. S., T. J. Moskowitz, and L. H. Pedersen, 2013, Value and momentum everywhere, The Journal of Finance, 68(3), 929–985. Asness, C. S., Frazzini A., and Pedersen, L. H., 2012, Leverage Aversion and Risk Parity, Financial Analysts Journal, 68(1), 47-59. Bai, J., T. G. Bali, and Q. Wen, 2018, Common risk factors in the cross-section of corporate bond returns, Journal of Financial Economics. Banz, R. W., 1981, The relationship between return and market value of common stocks, Journal of Financial Economics, 9(1), 3–18. Briner, B. G., Smith R. C., & Ward P., 2009, June, The Barra Europe Equity Model (EUE3) Research Notes. Bouri, E., Gupta, R., Roubaud, D., 2018, Herding behaviour in cryptocurrencies, Finance Research Letters, 29, 216-221. CoinDesk Indices, 2022, October, Digital Asset Classification Standard (DACS) Methodology. Connor, G., 1995, The Three Types of Factor Models: A Comparison of Their Explanatory Power, Financial Analysts Journal, 51(3), 42-46. Daryanani, G., 2008, Opportunistic Rebalancing: A New Paradigm for Wealth Managers, Journal of Financial Planning, 21(1), 46-81. Dirk G. Baur, Kihoon Hong, Adrian D. Lee, 2018, Bitcoin: Medium of exchange or speculative assets?, Journal of International Financial Markets, 54, 177-189. Fama, E. F., and K. R. French, 1992, The cross-section of expected stock returns, The Journal of Finance, 47(2), 427–465. Fama, E. F., and K. R. French, Common risk factors in the returns on stocks and bonds, Journal of Financial Economics, 33(1), 3–56. Fama, E. F., and K. R. French, 1996, Multifactor explanations of asset pricing anomalies, The Journal of Finance, 51(1), 55–84. Fry, J., 2018, Booms, busts and heavy-tails: The story of Bitcoin and cryptocurrency markets, Economics Letters, 171, 225-229. Han N. Ozsoylev, Johan Walden, M. Deniz Yavuz, Recep Bildik, 2014, Investor Networks in the Stock Market, The Review of Financial Studies, 27(5), 1323–1366. Hio Loi, 2017, The Liquidity of Bitcoin, International Journal of Economics and Finance, 10(1) Jegadeesh, N., and S. Titman, 1993, Returns to buying winners and selling losers: Implications for stock market efficiency, The Journal of Finance, 48(1), 65–91. Ji, Q., Bouri, E., Lau, C. K. M., and Roubaud, D., 2019, Dynamic connectedness and integration in cryptocurrency markets, International Review of Financial Analysis, 63, 257-272. Knutzen, S., and Retterholt, J., 2015, Performance of risk-based asset allocation strategies, Master’s Thesis, Copenhagen Business School. Kuzubas, TU., Ömercikoğlu, I., Saltoğlu, B., 2014, Network centrality measures and systemic risk: An application to the Turkish financial crisis, Physica A: Statistical Mechanics and its Applications, 405, 203-215. Lee, W., 2011, Risk-Based Asset Allocation: A New Answer to an Old Question?, The Journal of Portfolio Management, 37(4), 11-28. Lintner, J., 1965, Security Prices, Risk, and Maximal Gains From Diversification, The Journal of Finance, 20(4), 587-615. Liu, Y., Tsyvinski, A., & Wu, X., 2019, Common risk factors in cryptocurrency, The Journal of Finance, 77(2), 1133-1177. Lorenzo, L., and Arroyo J., 2023, Online risk-based portfolio allocation on subsets of crypto assets applying a prototype-based clustering algorithm, Financial Innovation, 9(1), 1-40. Lustig, H., N. Roussanov, and A. Verdelhan, 2011, Common risk factors in currency markets, Review of Financial Studies, 24(11), 3731–3777. Maillard, S., Roncalli, T., and Teiletche, J., 2010, The properties of equally weighted risk contribution portfolios, The Journal of Portfolio Management, 36(4), 60-70. Markowitz, H., 1952, Portfolio Selection, The Journal of Finance, 7(1), 77-91.Masters, S. J., 2003, Rebalancing, The Journal of Portfolio Management, 29(3), 52-57. Moskowitz, T. J., and M. Grinblatt, 1999, Do industries explain momentum?, The Journal of Finance, 54(4), 1249–1290. Moskowitz, T. J., Y. H. Ooi, and L. H. Pedersen, 2012, Time series momentum, Journal of Financial Economics, 104(2), 228–250. Mossin, J., 1966, Equilibrium in a Capital Asset Market, Econometrica, 34(4), 768- 783. Nobi, A., Maeng,SE., Ha,GG., and Lee,JW., 2014, Effects of global financial crisis on network structure in a local stock market, Physica A: Statistical Mechanics and its Applications, 407,135-143. Qian, E., 2005, Risk parity portfolios: Efficient portfolios through true diversification, Panagora Asset Management. Qian, E., 2012, Pension Liabilities and Risk Parity, The Journal of Investing, 21(3), 93-101. Ross, S., 1976, The Arbitrage Theory of Capital Asset Pricing, Journal of Economic Theory, 13, 341-360. S&P Dow Jones Indices (S&P DJI), 2022, September, S&P Digital Market Indices Methodology. Sharpe, W., 1964, Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk, The Journal of Finance, 19, 425-442. Szymanowska, M., F. De Roon, T. Nijman, and R. Van Den Goorbergh, 2014, An anatomy of commodity futures risk premia, The Journal of Finance, 69(1), 453–482. Urquhart, A., 2016, The inefficiency of Bitcoin, Economics Letters, 148, 80–82. Yakov Amihud, 2002, Illiquidity and stock returns: cross-section and time-series effects, Journal of Financial Markets, 5(1), 31-56. Yhlas Sovbetov, 2018, Factors Influencing Cryptocurrency Prices: Evidence from Bitcoin, Ethereum, Dash, Litcoin, and Monero, Journal of Economics and Financial Analysis, 2(2), 1-27. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |