論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
應用在WiMAX基地台高功率放大器之數位預失真線性化
技術研究 Linearization of High Power Amplifiers Using Digital Predistortion for WiMAX Basestation Applications |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
118 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2008-06-25 |
繳交日期 Date of Submission |
2008-07-29 |
關鍵字 Keywords |
功率放大器、數位預失真 WiMAX, Power Amplifier, Digital Predistortion |
||
統計 Statistics |
本論文已被瀏覽 5775 次,被下載 2523 次 The thesis/dissertation has been browsed 5775 times, has been downloaded 2523 times. |
中文摘要 |
本論文利用數位預失真技術來改善WiMAX基地台高功率放大器的線性度,使功率放大器在同樣線性度之條件下輸出功率與效率在表現上皆會優於傳統功\率倒退方法。由於WiMAX基地台系統之OFDM調制訊號具有相當高之PAPR值,使其對功率放大器線性度要求極為嚴格,本論文採用極座標架構之查表法數位預失真器,以FPGA實現基頻數位預失真電路,來提升一應用於WiMAX 2.6GHz頻段的Lateral MOSFET 15W AB類功率放大器之線性度,使其能滿足WiMAX基地台之發射頻譜遮罩與EVM規範要求,有預失真可比無預失真情況下操作在更高輸出功率範圍,進而提升轉換效率。 |
Abstract |
This thesis utilizes the digital predistortion technique to improve the linearity of high power amplifiers for WiMAX basestation applications. The power amplifier with the proposed technique can achieve higher output power and efficiency than with the conventional output power backoff technique. Owing to a very high PAPR value of the OFDM modulation signals applied to WiMAX basestation, the linearity requirement for the basestation power amplifiers is very strict. This thesis adopts a look-up table predistorter based on a polar scheme and realizes the digital predistorter circuitry using FPGA. As a result, the implemented digital predistorter successfully enhances the linearity of a 15W Lateral MOSFET Class-AB power amplifier operating in 2.6 GHz WiMAX band. Under the conditions that satisfy the spectrum mask and EVM requirement, the power amplifier with the digital predistorter can operate at higher output power and conversion efficiency than without the digital predistorter. |
目次 Table of Contents |
第一章 序論 1 1.1 背景簡介 1 1.2 章節規劃 1 第二章 功率放大器線性化技術 3 2.1 非線性特性 3 2.1.1 增益壓縮 4 2.1.2 交互調變失真 5 2.1.3 三階交越點 7 2.1.4 多音交互調變比例 8 2.1.5 鄰近通道功率比例 9 2.1.6 雙音訊號與多音訊號交互調失真之關係 10 2.2 AM/AM與AM/PM之非線性特性 11 2.2.1 AM/AM與AM/PM的轉換特性 12 2.3 線性化技術 14 2.3.1 前饋式線性化技術 15 2.3.2 回授式線性化技術 18 2.3.3 預失真線性化技術 19 第三章 基頻數位預失真技術 24 3.1 基頻數位預失真技術 24 3.1.1 多項式基頻預失真器 24 3.1.2 查找表基頻預失真器 26 3.2 基頻數位預失真電路設計 30 3.2.1 極座標數位預失真技術 30 3.2.2 基頻數位預失真電路設計 33 3.2.3 LUT及其索引函數之建立方法 36 第四章 WiMAX標準調制測試訊號之產生與設置 38 4.1 WiMAX標準調制訊號 38 4.2 WiMAX之射頻前端規格 44 4.3 WiMAX輸出訊號測試平台之建立 47 第五章 數位基頻預失真技術應用在WiMAX基地台高功率放大器 50 5.1 WiMAX基地台高功率放大器 50 5.1.1 AM/AM與AM/PM非線性特性之量測結果 52 5.2 CW測試訊號之量測結果 53 5.2.1 單音訊號測試之量測結果 54 5.2.2 雙音訊號測試之量測結果 55 5.2.3 多音訊號測試之量測結果 63 5.3 WiMAX輸出訊號測試之量測結果 73 5.3.1 WiMAX輸出訊號頻譜增長量測結果 73 5.3.2 WiMAX輸出訊號調制品質量測結果 79 第六章 結論 88 參考文獻 90 附錄A WiMAX在調制頻寬為3.5MHz的測試結果 94 附錄B WiMAX在調制頻寬為5MHz的測試結果 98 |
參考文獻 References |
[1] P. B. Kenington, High-Linearity RF Amplifier Design, Norwood, MA: Artech House, 2000. [2] S. C. Cripps, RF Power Amplifiers for Wireless Communications, Norwood,MA: Artech House, 1999. [3] B. Shi and L. Sundstrom, “Linearization of RF power amplifiers using power feedback,” in IEEE 49th Vehicular Technology Conf., 1999, pp. 1520-1524. [4] M. Faulkner, “Amplifier linearization using RF feedback and feedforward techniques,” IEEE Trans. Veh. Technol., vol. 47, pp. 209-215, Feb. 1998. [5] S. P. Stapleton, “Amplifier linearization using adaptive digital predistortion,” Applied Microwave Wireless, vol. 13, pp. 72-77, Feb. 2001. [6] S. Boumaiza and F. M. Ghannouchi, “Realistic power-amplifiers characterization with applcation to baseband digital predistortion for 3G base stations,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 3016-3021, Dec. 2002. [7] S. Kusunoki, K. Yanamoto, and T. Iida, “Power-amplifier module with digital adaptive predistortion for cellular phones,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2979-2986, Dec. 2002. [8] Y. Y. Woo, Y. Yang, J. Yi, J. Nam, J. Cha, and B. Kim, “An adaptive feedforward amplifier for WCDMA base stations using imperfect signal cancellation,” Microwave J., vol. 46, pp. 22-44, April 2003. [9] J. K. Cavers, “Adaptive behavior of a feedforward amplifier linearizer,” IEEE Trans. Veh. Technol., vol. 44, pp. 31-40, Feb. 1996. [10] M. Faulkner, “Amplifier linearization using RF feedback and feedforward techniques,” IEEE Trans. Veh. Technol., vol. 47, pp. 209-215, Feb. 1998. [11] P. B. Kenington and D. W. Bennett, “Linear distortion correction using a feedforward system,” IEEE Trans. Veh. Technol., vol. 45, pp. 74-81, Feb. 1996. [12] A. H. Coskun and S. Demir, “A mathematical characterization and analysis of a feedforward circuit for CDMA applications,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 767-777, March 2003. [13] G. Hau, T. Nishimura, and N. Iwata, “A highly efficient linearized wide-band CDMA handset power amplifier based on predistortion under various bias conditions,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1194-1201, June 2001. [14] Doherty, W. H., “A new high efficiency power amplifier for modulation waves,” Proc. of the Institude of Radio Engineers, Vol. 24, No. 9, Sep. 1936, pp. 1161-1182. [15] Terman, F. E., and J. R. Woodyard, “A high efficiency grid modulated amplifier,” Proc. of the Institude of Radio Engineers, Vol. 26, No. 8, Aug. 1938, pp. 929-945. [16] Smith, C. E., J. R. Hall, and J. O. Weldon, “Very high power long-wave broadcast station,” Proc. of the Institude of Radio Engineers, Vol. 42, NO. 8 Aug. 1954, pp.1222-1235. [17] Sainton, J. B., “A 500kW medium-wave standard broadcast transmitter,” [18] Joel Vuolevi, Timo Rahkonen, Distortion in RF power amplifier, Artech House, 2003. [19] K. J. Muhonen, M. Kavehrad, and R. Krishnamoorthy, “Look-Up table techniques for adaptive digital predistortion: a development and comparison,”IEEE Trans. Vehicular Tech., vol. 49, pp.1995-2002, Sep. 2000. [20] F. H. Raab, et al., “RF and microwave power amplifier and transmitter technologies –part 4,” High Frequency Electronics, Nov. 2003. [21] S. P. Stapleton, G. S. Kandola, and J. K. Cavers, “Simulation and analysis of an adaptive predistorter utilizing a complex spectral convolution,” IEEE Trans. Veh. Technol., vol. 41, pt. 11, pp. 387-394, Nov. 1992. [22] H. Besbes, T. Le-Ngoc, and H. Lin, “A fast adaptive polynomial predistorter for power amplifiers,” in Proc. IEEE Global Telecomm. Conf., July 2001, pp. 659-663. [23] K. C. Lee and P. Gardner, “A novel digital predistorter technique using an adaptive neuro-fuzzy inference system,” IEEE Commun. Lett., vol. 7, pp. 55-57, Feb. 2003. [24] H. H. Chen, C. H. Lin, P. C. Huang, and J. T. Chen, “Joint Polynomial and Look-Up-Table Predistortion Power Amplifier Linearization,” IEEE Trans. on Circuit and Systems, Vol. 53, Aug. 2006. [25] J. K. Cavers, “Amplifier linearization using a digital predistorter with fast adaptation and low memory requirements,” IEEE Trans. Veh. Technol., vol. 39, pp. 374-382, Nov. 1990. [26] J. K. Cavers, “Optimum table spacing in predistorting amplifier linearizers,” IEEE Tran .Vehicular Tech., vol. 48, pp. 1699-1705, Sep. 1999. [27] K. J. Muhonen, M. Kavehrad, and R. Krishnamoorthy, “Look-Up table techniques for adaptive digital predistortion: a development and comparison,”IEEE Trans. Vehicular Tech., vol. 49, pp.1995-2002, Sep. 2000. [28] J. Y. Hassani and M. Kamareei, “Quantization error improvement in a digital predistorter for RF power amplifier linearization,” in Proc. IEEE Veh. Technol. Conf., 2001, pp. 1201–1204. [29] A. S. Wright and W. G. Durtler, “Experimental performance of an adaptive digital linearized power amplifier,” IEEE Trans. Vehicular Tech., vol. 41, pp. 395-400, Nov. 1992. [30] M. Faulkner and M. Johansson, “Adaptive linearization using predistortion – experimental results,” IEEE Trans. Vehicular Tech., vol. 43, pp. 323-332, May 1994. [31] L. Sundstrom, M. Haulkner, and M. Johanson, “Quantization analysis and design of a Digital predistortion linearizer for RF power amplifier,” IEEE Trans. Vehicular Tech., vol. 45, pp. 707-719, Nov. 1996. [32] S. Boumaiza, J. Li, M. J-.Saidane and F. M. Ghannouchi, “Adaptive digital/RF predistortion using a nonuniform LUT indexing function with built-in dependence on the amplifier nonlinearity,” IEEE Trans. Microwave Theory and Tech., vol. 52, pp. 2670-2677, Dec. 2004. [33] W. J. Jung, W. R. Kim, K. M. King, and K. B. Lee, “Digital predistorter using multiple lookup tables,” Electron. Lett., vol. 39, Sep. 2003. [34] C. H. Lin, et al., “Dynamically optimum lookup-table spacing for power amplifier predistortion linearization,” IEEE Trans. Microwave Theory and Tech., vol. 54, pp. 2118-2127, May 2006. [35] WiMAX Concepts and RF Measurements – IEEE 802.16-2004 WiMAX PHY layer operation and measurements Application Note, Agilent Technology Inc., USA, 2005. [36] Hagen Heggenberger, WiMAX theory and measuremts, Rohde&Schwarz Inc., March 2007. [37] WiMAX Concepts and RF Measurements, IEEE 802.16-2004 WiMAX PHY layer operation and measurements Application Note, Agilent Technologies Inc., 2005. [38] B. Bisla, R. Eline, and L. M. F.-Neto, “RF system and circuit challenges for WiMAX,” Intel Technology Journal, vol. 8, pp. 189-200, Aug., 2004. [39] WPS-2527LD5-98, 2.5-2.7GHz Linear Power Amplifier Preliminary Data Sheet, Microwave Technology Inc., Fremont, CA, 2005. [40] C. Masse and Q. Luu, A 2.xGHz WiMAX Direct Conversion Transmitter Application Note, Analog Devices Inc., Norwood, MA, 2006. [41]杜至庸,線性化射頻功率放大器之數位基頻預失真技術之研究,國立中山大學電機工程學系研究所碩士論文,2007。 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |