Responsive image
博碩士論文 etd-0807116-104409 詳細資訊
Title page for etd-0807116-104409
論文名稱
Title
自我及交互注入鎖定雷達用於抵銷身體隨機移動效應之生命徵象偵測研究
Study of Self- and Mutually Injection-Locked Radar for Vital Sign Detection with Random Body Movement Cancellation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-09-02
繳交日期
Date of Submission
2016-09-07
關鍵字
Keywords
自我注入鎖定、生理徵象監測、隨機身體移動抵銷、連續波雷達、交互注入鎖定
vital signs, continuous-wave(CW) radar, random body movement, Self-injection-locked, mutually injection-locked
統計
Statistics
本論文已被瀏覽 5914 次,被下載 0
The thesis/dissertation has been browsed 5914 times, has been downloaded 0 times.
中文摘要
本篇論文致力於發展一種採用自我及交互注入鎖定的雷達系統,其系統架構與傳統架構相比,具備低功耗及低系統複雜度之優勢,可望大幅降低雷達硬體成本。此外考慮異側擺置在實際應用過程中往往受限於量測環境,因此於文中提出兩種不同的同側擺置架構以解決此問題。實驗上藉由都卜勒雷達系統所產生的連續波訊號以即時偵測人體的生理徵象。將由目標物反射回來的訊號注入到壓控振盪器中,使系統產生一組載有目標物生理徵象的頻率調制訊號,並透過後端的頻率解調器將此調制訊號還原,使受測者於量測過程中可由示波器及頻譜中觀察到自己的呼吸速率及心跳速率。在壓控振盪器的設計上,其頻率操作於2.4到2.484GHz,屬於工業科學醫用頻段。
在章節的呈現上主要分為兩部分,第一部分首先探討自我及交互注入鎖定雷達的系統架構、天線設置及理論模型,並搭配致動器的輔助分別以兩組自製金屬板對兩支天線進行校正,最後則比較兩組設置架構的實驗數據以了解兩者間抵銷程度的差異性。第二部分則參考牧場雷達模組的設計規格及電路架構,以自製的發射端及接收端電路構成一組自我注入鎖定雷達系統。在進行即時生理徵象的監測過程中,透過示波器及頻譜的輔助有助於瞭解兩組雷達系統彼此間的性能差異。實驗最後則探討造成兩者實驗差距的各項成因,並提出有效的改善方法。
Abstract
Conventional architectures have encountered serious challenges such as cost, system complexity, and power consumption. Therefore, to potentially overcome these disadvantages, this thesis proposes a continuous-wave (CW) radar architecture in a Self- and Mutually Injection-Locked (SMIL) state. Since the setup of two radars on different sides of the human body is often limited by the measurement environment in the practical application process, we presents two different antenna setups to solve this problem. This thesis demonstrated a Doppler radar system for monitoring vital signs in real time transmitting a continuous-wave (CW) signal. The Doppler phase-shifted signal that is partially reflected by a distant human subject and then injected into the VCO. Therefore, The radar system will generate a frequency modulated signal which caused by vital signs of a human body. The modulated signal will be demodulated through the frequency demodulator. When subjects are in the process of measurement , they can easily observe the rates of respiration and heartbeat in the spectrum and oscilloscope. The VCO that was design for the radar system was operated in the Industrial Scientific and Medical (ISM) bands from 2.36 to 2.484 GHz.
In the first part, we will study the system architecture, theoretical model and antenna setup of the SMIL radar. Two conducting plates was used with the actuator for calibrating two separate antennas. the system can remove in real time the effects of random body movement on the monitoring of vital signs from one side of the human body. A comparison of the experiment data can let us understand the cancellation difference between each antenna setup. In the second part, According to the previous design architecture and specification, we design the transmitter and receiver by ourselves and then constitute a SIL radar system. By using the the spectrum and oscilloscope in the process of real-time vital sign monitoring, we will know more about the differences between each radar system. Finally, we will explore the causes of the experiment result between each radar system and find the proposed method for improving the radar system.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖次 viii
表次 x
第一章 序論 1
1.1 研究背景與動機 1
1.2 生理感測訊號之發展與探討 2
1.3 論文章節規劃 4
第二章 同側雙雷達系統架構及操作原理 6
2.1 SMIL雷達系統 6
2.1.1 雷達系統模型 8
2.1.2 雷達系統天線設置 11
2.2 致動器擺動控制實驗 13
2.2.1 雙天線擺置實驗量測結果 19
2.2.2 實驗比較及理論結果 21
2.3 隨機身體擺動之生理徵象監測實驗 24
2.3.1 天線採用上下擺置之生理徵象監測實驗 25
2.3.2 天線採用前後擺置之生理徵象監測實驗 27
第三章 PCB生理感測雷達模組 31
3.1 生理感測雷達系統架構及操作原理 31
3.1.1 SIL雷達系統 32
3.1.2 電路設計架構 39
3.2 生理感測雷達之生理徵象監測實驗 49
3.2.1 實驗量測規格(調制單元) 49
3.2.2 實驗量測規格(解調單元) 51
3.2.3 生理感測實驗量測 54
第四章 結論 58
參考文獻 60
參考文獻 References
[1] J. C. Lin, “Noninvasive microwave measurement of respiration,” Proc. IEEE, vol. 63, no. 10, pp. 1530–1530, Oct. 1975.
[2] J. C. Lin, J. Kiernicki, M. Kiernicki, and P. B. Wollschlaeger, “Microwave apexcardiography,” IEEE Trans. Microw. Theory Techn., vol. 27, pp. 618–620, Jun 1979.
[3] K. M. Chen, D. Misra, H. Wang, H. R. Chuang, and E. Postow, “An X-band microwave life-detection system,” IEEE Trans. Biomed. Eng., vol. 33, no. 7, pp. 697–701, Jul. 1986.
[4] K.-M. Chen, Y. Huang, J. Zhang, and A. Norman, “Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier,” IEEE Trans. Biomed. Eng., vol. 47, pp. 105–114, Jan. 2000.
[5] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046-2060, May 2013.
[6] L. Changzhi, J. Cummings, J. Lam, E. Graves, and W. Wenhsing, “Radar remote monitoring of vital signs, ” IEEE Microw. Mag., vol. 10, no. 1, pp. 47-56, Feb. 2009.
[7] C. Li, J. Lin, and Y. Xiao, “Robust overnight monitoring of human vital signs by a non-contact respiration and heartbeat detector,” in 28th Annu. IEEE Int. Eng. Med. Biol. Soc. Conf., New York, USA, Aug. 2006, pp. 2235–2238.
[8] M. Alekhin, L. Anishchenko, A. Tataraidze, S. Ivashov, V. Parashin, L. Korostovtseva, Y. Sviryaev, and A. Bogomolov, “A novel method for recognition of bioradiolocation signal breathing patterns for noncontact screening of sleep apnea syndrome,” Int. J. Antennas Propagat, vol. 2013, pp. 1-8, 2013.
[9] H. Forster, O. Ipsiroglu, R. Kerbl, and E. Paditz, “Sudden infant death and pediatric sleep disorders,” Wiener Klin. Wochenschrift, vol. 115, pp. 847–849, Dec. 30, 2003.
[10] N. Hafner, I. Mostafanezhad, V. M. Lubecke, O. Boric-Lubecke, and A. Host-Madsen, “Non-contact cardiopulmonary sensing with a baby monitor,” in 29th Annu. IEEE Int. Eng. Med. Biol. Soc. Conf., Lyon, France, Aug. 2007, pp. 2300–2302.
[11] W. Massagram, V. M. Lubecke, A. Høst-Madsen, and O. Boric-Lubecke, “Assessment of heart rate variability and respiratory sinus arrhythmia via Doppler radar,” IEEE Trans. Microw. Theory Techn., vol. 57, pp. 2542-2549, Oct. 2009.
[12] J. E. Kiriazi, O. Boric-Lubecke, and V. M. Lubecke, “Dual-frequency technique for assessment of cardiopulmonary effective RCS and displacement,” IEEE Sens. J., vol. 12, no. 3, pp. 574–582, Mar. 2012
[13] C. Gu, R. Li, H. Zhang, A. Fung, C. Torres, S. Jiang, and C. Li, “Accurate respiration measurement using DC-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy,” IEEE Trans. Biomed. Eng., vol. 59, no. 11, pp. 3117–3123, Nov. 2012.
[14] M. Schneider, “Automotive radar – status and trends,” in IEEE Compound Semiconductor IC Symp. Dig., 2005, pp. 144-147.
[15] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Detection of concealed individuals based on their vital signs by using a see-through-wall imaging system with a self-injection-locked radar,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 696–704, Jan.
[16] S. E. Borek, “An overview of through the wall surveillance for homeland security,” in Proc. 34th Applied Imagery and Pattern Recognition Workshop, 2005, pp.42-47.
[17] S. Kazemia, A. Ghorbani, H. Amindavar, and C. Li, “Cyclostationary approach to Doppler radar heart and respiration rates monitoring with body motion cancelation using radar Doppler system,” Biomedical Signal Processing and Control, vol. 13, pp. 79–88, Sep. 2014.
[18] Q. Lv, Y. Dong, Y. Sun, C. Li, and L. Ran, “Detection of bio-signals from body movement based on high-dynamic-range Doppler radar sensor,” in Proc. IEEE MTT-S IMWS-BIO, 2015, pp. 88–89.
[19] I. Mostafanezhad, E. Yavari, O. Boric-Lubecke, V. M. Lubecke, and D. P. Mandic, “Cancellation of unwanted Doppler radar sensor motion using empirical mode decomposition” IEEE Sensors J., vol. 13, no. 5, 1897-1904, May 2013.
[20] C. Li and J. Lin, “Random body movement cancellation in Doppler radar vital sign detection,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 12, pp. 3143–3152, Dec. 2008.
[21] R. Fletcher and J. Han, “Low-cost differential front-end for Doppler radar vital sign monitoring,” in IEEE MTT-S Int. Microw. Symp. Dig., 2009, pp. 1325–1328.
[22] C. Gu, G. Wang, Y. Li, T. Inoue, and C. Li, “A hybrid radar-camera sensing system with phase compensation for random body movement cancellation in Doppler vital sign detection,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4678–4688, Dec. 2013.
[23] C. Gu, G. Wang, T. Inoue, and C. Li,“Doppler radar vital sign detection with random body movement cancellation based on adaptive phase compensation, ” presented at the IEEE MTT-S Int. Microw. Symp. Dig., Seatle, WA, USA, Jun. 2013
[24] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Single-antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3577–3587, Dec. 2011.
[25] M.-C. Tang, C.-Y. Kuo, D.-C. Wun, F.-K. Wang, and T.-S. Horng, “Same side dual SIL-radar system for real-time vital sign monitoring with random body movement cancellation,” in IEEE MTT-S Int. Microwave Symp. Dig., 2016, pp. 1-4.
[26] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112-4120, Dec. 2010.
[27] R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE, vol. 34, no. 6, pp. 351–357, Jun. 1946.
[28] 蕭介勛,本地振盪源的注入鎖定與牽引現象研究,國立中山大學電機工程學系碩士論文,民九十七年。
[29] 張博鈞,振幅與相位可調之高效率之E類功率振盪器,國立中山大學電機工程學系,民國一百零二年。
[30] H. Gheidi and A. Banai, “An ultra broadband direct demodulator for microwave FM receivers,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 2131 - 2139, Aug. 2011.
[31] 張盛富 張嘉展,無線通訊射頻晶片模組設計-射頻晶片篇,台北,全華圖書股份有限公司,2008年。
[32] 張盛富 張嘉展,無線通訊射頻晶片模組設計-射頻系統篇,台北,全華圖書股份有限公司,2007年。
[33] 張盛富 戴明鳳,無線通信之射頻被動電路設計,台北,全華圖書股份有限公司,1998年。
[34] D. M. Pozar, “Coupled Line Directional Couplers,” in Microwave Engineering, 3rd ed. New Jersey: Hoboken, 2005, pp. 347-356.
[35] S. Haykin, “Frequency Modulation,” in Communication Systems, 4th ed. New York : Wiley, 2001, pp. 109-126.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.139.98.10
論文開放下載的時間是 校外不公開

Your IP address is 3.139.98.10
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code