論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available
論文名稱 Title |
注入鎖定發射機研製與波束成型應用 Design and Implementation of Injection-locked Transmitter for Beamforming Applications |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
117 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2016-09-02 |
繳交日期 Date of Submission |
2016-09-07 |
關鍵字 Keywords |
旁波瓣抑制、波束成形、功率放大器、正交調制器、E類功率振盪器 Side-lobe suppression, Power amplifier, Beamforming, Quadrature modulator, Class-E power oscillator |
||
統計 Statistics |
本論文已被瀏覽 5800 次,被下載 0 次 The thesis/dissertation has been browsed 5800 times, has been downloaded 0 times. |
中文摘要 |
隨著新一代通訊標準的制定,波束成形成為了現今已支援的一項重要技術。由於傳統波束成形的架構需要以複雜的電路來實現,本篇論文中使用注入鎖定發射機相位可調的特性來實現一個低電路複雜度且具波束成形應用之發射機。本論文可分為三個部分來介紹此發射機之前端電路架構,分別為正交調制器、E類功率振盪器及線性功率放大器。正交調制器部分,我們以混合式元件配印刷電路板製程技術來實現電路,並且對於發射機的旁波帶抑制應用來進行元件的挑選和系統特性的討論。第二部分為E類功率振盪器,先從E類功率放大器的理論介紹,並以此為基礎利用變壓器回授來實現一個E類操作之功率振盪器。而此種振盪器在注入鎖定的情況下,擁有相位和振幅可調的特性。第三部分為線性功率放大器,其功率電晶採用疊接的形式設計,架構上選擇則是全差動式形式,並搭配輸入輸出端之巴倫器將雙端差動訊號轉換成單端訊號。第二部分和第三部分皆是採用TSMC 0.18μm製程來實現電路。最後將正交調制器與另一位同學的主動式相位陣列來進行發射機之系統規格測試,並驗證此架構波束成形之特性。 |
Abstract |
With the next communication standards, beamforming becomes an important technology which is supported now. Due to conventional beamforming architecture im-plementation which requires complex circuitry , this paper uses an injection locking transmitter which has phase adjustable features to achieve a low circuit complexity , with beamforming application transmitter. This thesis can be divided into three parts to introduce front-end circuit structure of this transmitter , respectively quadrature modula-tor , Class-E class power oscillator and Class-A linear power amplifier . In quadrature modulator section , we use the hybrid components with the printed circuit board process to achieve the circuit , and discuss system characteristics of quadrature modulator and the selection of components for the side-lobe suppression application. Second section is about Class-E power oscillator. First , we introduce the Class-E power amplifier theory and integrate a transformer to implement Class-E power oscilla-tor. This type of oscillator with adjustable amplitude and phase characteristics. Third section is about Class-A linear power amplifier. The type of power transistor layout which we use is cascode structure. We choose full differential structure and use the balun to convert the differential signal into sigle-ended signal. The second section and third section both use TSMC 0.18um process to implement the circuit. Finally , the the quadrature modulator and active phased array which another classmate implement to experiment the specification of the transmitter and verify the beamforming validity. |
目次 Table of Contents |
論文審定書 i 公開授權書 ii 誌謝 iii 摘要 iv Abstract v 目錄 vi 圖次 viii 表次 xiii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 相位陣列架構 2 1.3 主動式陣列的振幅調整 3 1.4 注入鎖定發射機與波束成形的應用 4 1.5 章節規劃 6 第二章 2.3~2.5 GHz正交調制器 7 2.1 架構簡介 7 2.1.1 直接升頻發射機架構簡介 7 2.1.2 正交調制器架構簡介 8 2.1.3 混頻器簡介 9 2.2 混頻器實作與特性分析 12 2.2.1 設計原理 13 2.2.2 電路設計 15 2.2.3 實作與量測結果 15 2.3 正交調制器之整合與規格測試 26 2.3.1 電路整合 26 2.3.2 量測方法與儀器設置 27 2.3.3 實作與量測結果 31 2.3.4 結果討論 38 2.4 發射機系統測試 43 2.4.1 發射機介紹 43 2.4.2 功率放大器介紹與量測 43 2.4.3 系統量測結果 45 第三章 注入鎖定E類功率振盪器 49 3.1 E類功率振盪器原理 49 3.1.1 E類功率放大器理論 49 3.1.2 振盪條件 52 3.1.3 注入鎖定於功率振盪器之現象 54 3.2 晶片電路設計 57 3.2.1 電路架構 57 3.2.2 電路設計流程 58 3.3 晶片電路模擬與量測結果 62 第四章 CMOS線性功率放大器 69 4.1 線性功率放大器 69 4.1.1 基本設計理論 69 4.1.2 功率放大器設計理論 72 4.1.3 功率放大器分類 76 4.2 晶片電路設計 81 4.2.1 電路架構的選擇與考量 82 4.2.2 設計流程 84 4.2.3 功率放大器設計方法與考量 85 4.2.4 多指狀纏繞式變壓器設計方法與考量 86 4.3 晶片電路模擬與量測結果 89 4.3.1 模擬與量測結果 90 4.3.2 量測方法與儀器設置 92 4.3.3 量測結果討論與檢討 94 第五章 結論 97 參考文獻 99 |
參考文獻 References |
[1] 5G. Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/MIMO [2] 4G Americas .(2015, June.). Mobile Broadband Evolution Towards 5G: 3GPP Rel-12 & Rel-13 and Beyond. [Online]. Available: http://www.4gamericas.org/files/8914/3576/4557/4G_Americas_Mobile_Broadband_Evolution_Toward_5G-Rel-12_Rel-13_June_2015x.pdf [3] Shannon–Hartley theorem. Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Shannon–Hartley_theorem [4] Dino Flore (2015, February.). Evolution of LTE in Release 13. 3GPP [Online]. Available: http://www.3gpp.org/news-events/3gpp-news/1628-rel13 [5] 蘇志偉,劉舒慈,林奕廷 (2015, September.). ITU/3GPP研發時程公布 5G技術標準發展藍圖漸明朗. Micro-electronics. [Online]. Available: http://www.mem.com.tw/article_content.asp?sn=1508310013 [6] D. Parker and D. C. Zimmermann, “Phased arrays—Part I: Theory and ar-chitectures,” IEEE Trans. Microwave Theory Tech, vol. 50, pp. 678–687, Mar. 2002. [7] 紀鈞翔(2015, October.).滿足5G高頻發展需求-主動式相位陣列天線露頭角. Micro-electronics. [Online]. Availa-ble:http://www.2cm.com.tw/technologyshow_content.asp?sn=1509250012 [8] C. Charles, “A calibrated phase and amplitude control system for phased-array transmitters,” Ph.D. dissertation, Dept. Elect. Eng., Univ. Washington, Seattle, WA, USA, 2006 [9] E. Holzman and A. Agrawal, “A comparison of active phased array, corpo-rate beamforming networks,” in IEEE Int. Symp. Phased-Array Technol., Boston, MA, Oct. 1996, pp. 429–434. [10] A. K. Agrawal and E. L. Holzman, “Beamformer architectures for active phased array radar antennas,” IEEE Trans. Antennas Propag., vol.47, no. 3, pp. 432–442, Mar. 1999. [11] 翁金輅,平面天線設計上課講義,2001年9月 [12] R. L. Haupt , “Array Factor Analysis,” in Antenna Arrays: A Computational Approach. Hoboken NJ: Wiley, 2010, ch.2, sec.7, pp. 82-84 [13] 張博鈞,振幅與相位可調之高效率之E類功率振盪器,國立中山大學電機工程學系碩士論文,民國一百零二年 [14] E. Danial, “Novel Approaches to the Design of Phased Array Antennas,” Doctoral dissertation, Dept. Elect. Eng., Univ. Michigan, Arbor, MI, USA, 2011 [15] Y. T. Lo and J. F. Kiang, “Comparison of injection-locked and coupled oscil-lator arrays for beamforming,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1353-1360, Apr. 2015. [16] 張盛富、張嘉展,無線通訊射頻晶片模組設計-射頻系統篇,台北,全華圖書股份有限公司,2009年 [17] B. Razavi, “RF transmitter architectures and circuits,” in Proc. IEEE Custom Integrated Circuits Conf., 1999, pp. 197–204. [18] H. Samueli, “Digital wireless transceiver architectures,” ISSCC94 Short Course, San Francisco, CA, February 1994. [19] 李健榮, RF Transceiver Module Design上課講義,2013 [20] 吳建銘,無線通訊正交調制器之單晶微波積體電路設計,國立中山大學電機工程研究所碩士論文,2000年。 [21] “Chapter IV , RF Components Active and Passive Mixers,” ADI Wireless Seminar 2006 Seminar, Analog Devices, Inc. [22] 洪子聖,射頻通訊電路上課講義,2014 [23] “Evaluation of vector modulator IC performance,” Application Note, Hewlett Packard Company. [24] 張盛富、張嘉展,無線通訊射頻晶片模組設計-射頻晶片篇,台北,全華圖書股份有限公司,2008年 [25] S.A. Maas, “Microwave mixers,” Norwood, MA: Artech House,1986 [26] S.A. Mass, “Nonlinear microwave circuit,” Norwood, MA: Artech House, 1988 [27] 白中和,高頻電路設計應用技術,建興出版社,1992年 [28] “Optimization of quadrature modulator performance,” Technical Notes and Articles, RF Micro Devices Inc. [29] T. Sowlati and D. M. W. Leenaerts, “A 2.4-GHz 0.18-m CMOS self biased cascode power amplifier,” IEEE J. Solid-State Circuits, vol. 38, no. 8, pp. 1318–1324, Aug. 2003. [30] Steve C. Cripps, “RF Power Amplifier For Wireless Communications,” Ar-tech House, London, 2006. [31] T.-T. Liu and J. M. Rabaey, “Linearity analysis of CMOS passive mixer,” in Proc. IEEE Int. Symp. Circuits and Systems, Rio de Janeiro, Brazil, May 2011, pp. 2833–2836. [32] Y Morishita and K Araki, “Nonlinear analysis of MOS FET passive mixers as a function of local signal,” in 2012 Asia Pacific Microwave Conference Pro-ceedings, Kaohsiung, Taiwan, Dec 2012, pp. 1217-1219. [33] “RF Directional Couplers and 3dB Hybrids Overview,” MACOM., Lowell, MA,2001 [34] C.Y (2015, Nov.). 物聯網時代不可或缺的要角-功率放大器(PA). STOCKFELL. [Online]. Available: http://www.stockfeel.com.tw/物聯網時代不可或缺的要角-功率放大器pa/ [35] N. O. Sokal and A. D. Sokal, “Class E-a new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. 10, no. 6, pp. 168-176, Jun. 1975. [36] F. H. Raab, “Idealized operation of the Class E tuned power amplifier,” IEEE Trans. Circuits Syst., vol. 24, no. 12, pp. 725–735, Dec. 1977. [37] R. E. Zulinski and J. K. Steadman, “Class E power amplifiers and frequency multipliers with finite DC-feed inductance,” IEEE Trans. Circuits Syst., vol. 34, no. 9, pp. 1074-1087, Sep. 1987. [38] C. H. Li and Y. O. Yam, “Maximum frequency and optimum performance of Class E power amplifiers,” IEEE Proc. Circuits, Devices, Syst., vol. 141, no. 3, pp. 174-184, Jun. 1994. [39] C. P. Avratoglou, N. C. Voulgaris, and F. I. Ioannidou, “Analysis and design of a generalized Class E tuned power amplifier,” IEEE Trans. Circuits Syst., vol. 36, no. 8, pp. 1086-1079, Aug. 1989. [40] P. Alinikula, K. Choi, and S. I. Long, “Design of Class E power amplifier with nonlinear parasitic output capacitance,” IEEE Trans. Circuits Syst. II, vol. 46, no. 2, pp. 114–119, Feb. 1999. [41] D. M. Pozar, Microwave engineering. 3rd ed, John Wiley&Sons, 2005, ch.12 [42] R. Adler, “A study of locking phenomena in oscillators,” IRE, vol. 34, no. 6, pp. 351-357, Jun. 1946. [43] L. J. Paciorek, “Injection locking of oscillators,” Proc. IEEE, vol. 53, no. 11, pp. 1723–1727, Nov. 1965. [44] H. S.Oh, T. Song and C. Ki. Kim, “A power-efficienct injeciton-locked Class-E power amplifier for wireless sensor network,” IEEE Microw. Wire-less Compon. Lett., vol. 16, no. 4, Apr. 2006. [45] M. El-Desouki, et al, “A fully integrated CMOS power amplifier using su-perharmonic injection-locking for short range applications,” IEEE Sensor Journal, pp. 2149-2158, Sept., 2011. [46] E. L. Tan, “Rollett-based single-parameter criteria for unconditional stability of linear two-ports,” IEEE Proc.-Micow. Antennas Propag., vol. 151, no.4, pp. 298-302, August 2004. [47] 邱煥凱、林貴城,ADS應用於射頻功率放大器設計與模擬,新竹,國立清華大學出版社,2013年。 [48] ADS, ver. 2011, Agilent Technol., Santa Clara, CA, 2011. [49] Sowlati, T.; Leenaerts, D. M. W.; “A 2.4-GHz 0.18-μm CMOS self-biased cascode power amplifier,” IEEE Journal of Solid-State Circuits., Vol 38, Is-sue 8, Aug. 2003, pp:1318 – 1324. [50] T. Kuo and B. Lusignan, “A 1.5-W class-F RF power amplifier in 0.25- m CMOS technology,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Pa-pers., pp. 154–155, 2001. [51] C. Yoo and Q. Huang, “A common-gate switched 0.9-W class-E power am-plifier with 41% PAE in 0.25-μm CMOS,” IEEE J. Solid-State Circuits., vol. 36, pp. 823–830, May 2001. [52] C. Liang and B. Razavi, “A layout technique for millimeter-wave PA transis-tors,” in Proc. RFIC Symp., Jun. 2011. [53] Boshi Jin, Junghwan Moon, Chenxi Zhao, Bumman Kim,“ A 30.8-dBm wideband CMOS power amplifier with minimized supply fluctuation,” IEEE Trans. Microwave Theory & Tech., vol 60, no. 6, pp. 1658-2142, August 2010. [54] Jongchan Kang, Jehyung Yoon, Kyoungjoon Min, Daekyu Yu, Joongjin Nam, Youngoo Yang, Bumman Kim,“ A highly linear and efficient differen-tial CMOS power amplifier with harmonic control,” IEEE Journal of Sol-id-State Circuit., vol. 41, no.6, pp. 1314-1322, June, 2012. [55] 魏祖強 平面型變壓器為基礎之積體化被動元件設計與模型化研究,國立中山大學電機工程研究所碩士論文,民國九十七年。 [56] K.J. Kim, T. H. Lim and K.H. Anh,” The novel high efficiency on chip transformers for the CMOS,” IEEE ISIC., pp.401–404, 2009. [57] Quadrature (I/Q) Modulator Sideband Suppression. RF Café. [Online]. Available: http://www.rfcafe.com/references/electrical/quad-mod.htm [58] “Baseband I/Q Trace Mismatch Degrades Sideband Suppression of RF I/Q Modulation,” Application Note, Texas instruments. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:永不公開 not available 校外 Off-campus:永不公開 not available 您的 IP(校外) 位址是 18.224.63.123 論文開放下載的時間是 校外不公開 Your IP address is 18.224.63.123 This thesis will be available to you on Indicate off-campus access is not available. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 永不公開 not available |
QR Code |