論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
高頻頻率調變連續波雷達系統設計及驗證 Design and Verification of High Frequency FMCW Radar System |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
75 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2021-08-23 |
繳交日期 Date of Submission |
2021-09-08 |
關鍵字 Keywords |
岸基測流雷達、螺旋天線、頻率調變連續波雷達、直接數字合成器、高頻雷達 Coastal Ocean dynamics Application Radar, helical antenna, FMCW radar, direct digital synthesizer, high-frequency radar |
||
統計 Statistics |
本論文已被瀏覽 278 次,被下載 0 次 The thesis/dissertation has been browsed 278 times, has been downloaded 0 times. |
中文摘要 |
本論文首先提出利用可變電容來調整螺旋天線的SWR值,如此可以節省許多在室外調整螺旋天線的時間。其次,本論文提出了能夠操作在7.8125 MHz頻段之頻率調變連續波雷達系統架構,並且利用實驗進行驗證,以確保與台灣海洋研究中心之高頻測流雷達系統都有著相同的功能。 實驗部分首先組建雷達系統之接收端,利用實驗及儀器來逐步確認雷達架構的各端點之參數是否與台灣海洋科技研究中心之高頻測流雷達系統之接收端相同。確認相同後便利用AD9854晶片作為IQ之發射端,以實現整個雷達系統架構,最後則是使用兩個方法來量測本論文提出的頻率調變連續波雷達系統。第一個方法為調整發射源之發射參數,利用頻寬80MHz和掃頻速度0.00005s的發射訊號並加上延遲22 ns的延遲線,以量測拍頻頻率是否有符合預期。第二個方法為利用RC delay的方法來作為該雷達架構的時間延遲,使用發射源發射參數為,中心頻率7.8125MHz、頻寬50KHz和掃頻速度0.455s,並確認該頻率調變連續波雷達系統所得到的拍頻頻率符合預期。此外,本論文也利用RC delay的方法驗證了台灣海洋科技研究中心之雷達系統。 |
Abstract |
This paper first came up with a method to adjust the SWR value of helical antennas using variable capacitors. This greatly reduced the time spent on manually adjusting outdoor helical antennas. Furthermore, this work presents a Frequency Modulated Continuous Waveform (FMCW) radar system framework that operates at the 7.8125MHz frequency range. Through experiments, we verified that our framework possesses the same functionality as the HF Radar Current Measurement System at Taiwan Ocean Research Institute. For the experiments, we first set up a receiver for the FMCW, where instrument readings are used to ensure that the parameters match with those on the HF Radar Current Measurement System at Taiwan Ocean Research Institute. AD9854 chips are used as the IQ transmitter to finalize the FMCW radar framework. We presented two methods to verify the functionality of the FMCW system: The first method adjusts the transmitter parameters. Using signals with a bandwidth of 80MHz and sweep rate of 0.00005s, we apply a 22ns delay line and measure the beat-frequency. The second method utilizes RC delays. The transmitters are set to emit a signal with center frequency of 7.8125MHz, bandwidth of 50KHz and sweep rate of 0.455s. The beat-frequency measured from both experiments confirms that FMCW’s functionality indeed matches that of the HF Radar Current Measurement System at Taiwan Ocean Research Institute. |
目次 Table of Contents |
目錄 論文審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 v 圖次 vii 表次 xi 第一章 序論 1 1.1研究背景與動機 1 1.2頻率調變連續波雷達系統簡介 2 1.3海洋測流雷達系統介紹 4 1.4章節規劃 9 第二章 螺旋天線駐波比之簡易調整方法 10 2.1螺旋天線原理 10 2.2實驗儀器介紹 13 2.3簡易調整螺旋天線之設計 14 2.4簡易調整螺旋天線實驗過程模擬及驗證 16 2.4.1 實驗室內-27MHz螺旋天線螺距大小及FR4不同管長實驗 16 2.4.2實驗室內-27MHz螺旋天線增加可變電容實驗 24 2.4.3室外-27MHz、7.8125MHz螺旋天線螺距大小及增加可變電容實驗 28 2.4.4 2.4GHz螺旋天線場型實驗 33 第三章 連續調變連續波雷達子系統設計及驗證 36 3.1子系統元件介紹 37 3.2測量儀器介紹 39 3.3子系統實驗與驗證 41 第四章 連續調變連續波雷達系統設計及驗證 45 4.1頻率調變連續波雷達公式推導 45 4.2元件及儀器介紹 47 4.3完整系統架構設計 48 4.3頻率連續波雷達系統實驗與驗證 49 第五章 結論與未來展望 59 參考文獻 60 |
參考文獻 References |
參考文獻 [1] 林家豐,高家俊,董東璟,張育瑋(2005) "應用 X-band 雷達於分析海面流況之研究",第二十七屆海洋工程研討會論文集。 [2] A. Dzvonkovskaya, and K. W. Gurgel, “HF radar WERA application for ship detection and tracking,” Eur. J. Navig., vol. 7, no. 3, pp. 18-25, 2009. [3] 楊文昌,梁恩昱,王雅真,陳少華,胡建驊,李俊賢(2010) "利用高頻雷達監測台灣四周海域表層海流",第三十二屆海洋工程研討會論文集。 [4] G. Charvat, Small and Short Range Radar Systems, Taylor & Francis Group, 2014. [5] J. Lee, Y.-A. Li, M.-H. Hung, and S.-J. Huang, “A fully integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2746–2756, 2010. [6] M. I. Skolnik, Introduction to Radar System, 3rd ed. New York: McGraw-Hill, 2001. [7] S. Jeng, W. Chieng and H. Lu, “Estimating Speed Using a Side-Looking Single-Radar Vehicle Detector,” in IEEE trans. Intell. Transp. Syst., vol. 15, no. 2, pp. 607-614, Apr. 2014. [8] D. Weyer, M. B. Dayanik, L. Jie, A. Albalawi, A. Alothaimen, M. Aseeri, and M. P. Flynn, “Design considerations for integrated radar chirp synthesizers,” IEEE Access, vol. 7, pp. 13723–13736, 2019. [9] 程嘉彥,黃郁軒,陳少華(2021) "雷達運作與數據處理原理技術文件(初稿)", 財團法人國家實驗研究院台灣海洋科技研究中心。 [10] J. D. Paduan, H. C. Graber, “Introduction to high-frequency radar: Reality and myth,” Oceanography, vol. 10, no. SPL.ISS. 2, pp. 36-39, 1997. [11] A. Joseph, Measuring ocean currents: tools, technologies, and data. Newnes., 2013. [12] 薛宇倫(2012) "台灣周遭海域高頻雷達測流成果之初步探討",國立成功大學水利及海洋工程學系研究所碩士論文。 [13] D. Barrick, “First-order theory and analysis of MF/HF/VHF scatter from the sea,” in IEEE Trans. Antennas Propag., vol. 20, no. 1, pp. 2-10, Jan. 1972. [14] B. Lipa, D. Barrick, “Least-squares methods for the extraction of surface currents from CODAR crossed-loop data: Application at ARSLOE,” in IEEE J. Ocean. Eng., vol. 8, no. 4, pp. 226-253, Oct. 1983. [15] D. Prandle, D. Ryder, “Measurement of surface currents in Liverpool Bay by high-frequency radar,” Nature, vol. 315, pp. 128–131, 1985. [16] Codar [Online]. Available: http://www.codar.com/SeaSonde.shtml [17] WERA [Online]. Available: http://wera.cen.uni-hamburg.de/select_egs.shtml [18] Codar [Online]. Available: http://www.codar.com/intro_hf_currentmap.shtml [19] K.-W. Gurgel, G. Antonischki and T. Schlick, “A comparison of surface current fields derived by beam forming and direction finding as applied by the HF radar WERA,” in Proc. IGARSS, pp. 1805-1807, 1997. [20] WERA [Online]. Available: http://wera.cen.uni-hamburg.de/RX-4-Element.shtml [21] WERA [Online]. Available: http://wera.cen.uni-hamburg.de/WERA.shtml [22] K.-W. Gurgel, H.-H. Essen, and T. Schlick, “The University of Hamburg WERA HF Radar - Theory and Solutions,” in Proc. First International Radiowave Oceanography Workshop, 2001. [23] J. D. Kraus, “The Helical Antenna,” in Proc. IRE, vol. 37, no. 3, pp. 263-272, Mar. 1949. [24] J. D. Kraus, “Helical Beam Antennas for Wide-Band Applications,” Proc. IRE, vol. 36, no. 10, pp. 1236-1242, Oct. 1948. [25] ifuun [Online] Available: http://www.ifuun.com/a2018111317037929/ [26] G. Zhou “A non-uniform pitch dual band helix antenna.” IEEE Antennas Propag. Soc. Int. Symp. Transmitting Waves Prog. Next Millennium. Dig. Held Conjunct USNC/URSI Nat. Radio Sci. Meeting, vol.1, pp. 274-277, 2000. [27] S. Zhao, C. Fumeaux and C. Coleman, “Miniaturised high-frequency and very-high-frequency antennas based on optimized non-uniform helical structures,” Proc. Microw. Antennas Propag., vol. 6, Iss. 6, Apr. 2012. [28] M. Sonkki, M. Berg, J. Pihlaja, S. Karhu, H. Jantunen and E. Salonen, “Varactor Tunable Helical Antenna, ” Proc. Eur. Conf. Antennas Propag., pp. 1-6, 2007. [29] Keysight [Online] Available: https://www.keysight.com/tw/zh/support/M9372A/ [30] Gigaparts [Online] Available: https://www.gigaparts.com/mfj-269c.html [31] Analog Device [Online] Available: https://www.analog.com/media/en/technical-documentation/data-sheets/AD9854.pdf [32] J. Tierney, C. M. Rader and B. Gold, “A digital frequency synthesizer,” IEEE Trans. Audio Electroacoust., vol. AU-19, no. 1, pp. 48-56, Mar. 1971. [33] J. Vankka et al., “A direct digital synthesizer with an on-chip D/A-converter,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 218-227, Feb. 1998. [34] X. Yu, F. F. Dai, J. D. Irwin, and R. C. Jaeger, “A 9-Bit quadrature direct digital synthesizer implemented in 0.18 um SiGe BiCMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 5, pp. 1257-1266, May 2008. [35] Y. X. Yang, X. Shi, F. Su, Z. B. Wang, P. Yang and H. Z. Yang, “A 2.2-GHz Configurable Direct Digital Frequency Synthesizer Based on LUT and Rotation,” IEEE Trans. Circuits Syst. I. Regular Papers, vol. 66, pp. 1970-1980, May. 2019. [36] Keysight [Online] Available: https://www.keysight.com/tw/zh/product/N9030B/ [37] Keysight [Online] Available: https://www.keysight.com/tw/zh/software/application-sw/89600-vsa-software.html#Resources [38] Keysight [Online] Available: https://www.keysight.com/tw/zh/product/DSA91304A/ [39] J. R. Klauder, A. C. Price, S. Darlington and W. J. Albersheim, “The theory and design of chirp radars,” Bell Syst. Techn. J., vol. 39, no. 4, pp. 745-809, 1960. [40] F. Rodriguez-Morales et al., “An improved UWB microwave radar for very long-range measurements of snow cover, ” IEEE Trans. Instrum. Meas., vol. 69, no. 10, pp. 7761-7772, Oct. 2020. [41] M.-T. Dao, D.-H. Shin, Y.-T. Im and S.-O. Park, “A two sweeping VCO source for heterodyne FMCW radar,” IEEE Trans. Instrum. Meas., vol. 62, no. 1, pp. 230-239, Jan. 2013. [42] P. Brennan, Y. Huang, M. Ash and K. Chetty, “Determination of Sweep Linearity Requirements in FMCW Radar Systems Based on Simple Voltage-Controlled Oscillator Sources,” IEEE Trans. Aerosp Electron Syst., vol. 47, no. 3, pp. 1594-1604, July 2011. [43] S. Baek, Y. Jung, and S. Lee, “Signal Expansion Method in Indoor FMCW Radar Systems for Improving Range Resolution,” Sensors21, no. 12, 2021. [44] A. G. Stove, “Linear FMCW radar techniques,” Proc. Inst. Electr. Eng. F—Radar Signal Process., vol. 139, no. 5, pp. 343–350, Oct. 1992. [45] T. Mitomo, N. Ono, H. Hoshino, Y. Yoshihara, O. Watanabe, and I. Seto, “A 77 GHz 90 nm CMOS transceiver for FMCW radar applications,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 928-937, Apr. 2010. [46] J. Lee, Y. Li, M. Hung and S. Huang, “A Fully-Integrated 77-GHz FMCW Radar Transceiver in 65-nm CMOS Technology,” in IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2746-2756, Dec. 2010. [47] F. Wang, P. Juan, D. Chian and C. Wen, “Multiple Range and Vital Sign Detection Based on Single-Conversion Self-Injection-Locked Hybrid Mode Radar With a Novel Frequency Estimation Algorithm,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 5, pp. 1908-1920, May 2020. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |