Responsive image
博碩士論文 etd-0815121-094411 詳細資訊
Title page for etd-0815121-094411
論文名稱
Title
變形溫度與應變率對中錳鋼之變形機制與顯微組織的影響
The effect of deformation temperature and strain rate on the deformation mechanism and microstructure of a medium Mn steel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
212
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2021-09-08
繳交日期
Date of Submission
2021-09-15
關鍵字
Keywords
中錳鋼、變形雙晶、拉伸溫度、變形機構、應變率、顯微組織
medium manganese steel, deformation twin, deformation temperature, deformation mechanism, strain rate, microstructure
統計
Statistics
本論文已被瀏覽 227 次,被下載 5
The thesis/dissertation has been browsed 227 times, has been downloaded 5 times.
中文摘要
本實驗主要研究拉伸溫度及應變率對於中錳鋼之變形機制的影響。以10-5 s-1及10-3 s-1兩種應變率,在200 oC至400 oC間進行拉伸試驗,並藉由掃描式電子顯微鏡(SEM)、背向散射電子繞射(EBSD)以及穿透式電子顯微鏡(TEM)的分析,探討溫度與應變率對拉伸性質與顯微組織的影響,期望了解溫度與應變率對Fe-5.3Mn-2.3Al-0.35C-1.1Si中錳鋼變形行為的影響。
實驗結果顯示,在10-5 s-1應變率下,當變形溫度由200 oC上升至225 oC時,主要變形機構會由變形誘發變韌鐵相變化(Deformation-Induced Bainite, DIB)轉變為變形雙晶,在200 oC時最接近鋼材DIB之上限溫度,225 oC以後則由變形雙晶主導。然而變形雙晶於拉伸溫度提升到300 oC至350 oC時,隨著溫度上升而逐漸受到抑制。最後,在350 oC時,變形機構由變形雙晶逐漸轉變為以差排滑移(dislocation glide)為主的變形機構。
而當應變率提高至10-3 s-1時,由於應變率升高會增加材料之沃斯田鐵穩定性,變形誘發變韌鐵相變化會在較低變形溫度下受到抑制,變形雙晶機構於較低溫度出現。因此10-3 s-1應變率時,變形雙晶在200 oC左右逐漸轉變為主導的變形機構,在約300 oC時,變形機構再逐漸由變形雙晶轉變為差排滑移主導。
Abstract
This study is aimed at understanding the effect of deformation temperature and strain rate on the deformation mechanism of a medium manganese steel, Fe-5.3Mn-2.3Al-0.35C-1.1Si. Under 10-5 s-1 and 10-3 s-1 strain rates, the tensile tests were carried out from 200 oC to 400 oC. The effects of deformation temperature and strain rate on tensile properties and microstructure behavior have been studied by scanning electron microscope (SEM), backscattered electron diffraction (EBSD), and transmission electron microscopy (TEM).
Experimental results showed that at a strain rate of 10-5 s-1, when the deformation temperature increased from 200 °C to 225 °C, the dominant deformation mechanism transforms from deformation-induced bainitic transformation (DIB) to twinning. 200 oC was the closest deformation temperature to the upper limit temperature of DIB, when the deformation temperature increased to 225 oC, the deformation mechanism was dominated by twinning. However, twinning was gradually suppressed as the deformation temperature increased from 300 oC to 350 oC. When the deformation temperature reached up to above 350 oC, the dominant deformation mechanism gradually changed from twinning to dislocation slip.
As the strain rate was increased to 10-3 s-1, the austenite stability of the steel was increased, hence, deformation-induced bainitic transformation (DIB) was suppressed at a lower deformation temperature and promoted twinning occurred. Therefore, at a strain rate of 10-3 s-1, twinning became the dominant deformation mechanism at about 200 oC, and near 300 oC, the dominant deformation mechanism was changed to dislocation slip.
目次 Table of Contents
論文審定書 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xxi
一、前言 1
二、文獻回顧 2
2-1 第三代先進高強度鋼 2
2-2 變形誘發麻田散鐵與變韌鐵 2
2-3 沃斯田鐵穩定性 4
2-4 TWIP效應 6
2-4-1 變形雙晶與加工硬化的關係 6
2-4-2 疊差能對TWIP效應的影響 9
2-4-3 溫度對變形雙晶生成速率的影響 12
2-4-4 溫度對變形雙晶形貌的影響 13
2-5 變形溫度對變形機制的影響 14
2-6 應變率對變形機制的影響 18
三、研究目的 20
四、實驗方法 21
4-1 實驗材料 21
4-2 實驗步驟 21
4-3 拉伸試驗 21
4-4 顯微組織分析 22
4-4-1掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 22
4-4-2背向散射電子繞射儀(Electron Backscattered Scattered Diffraction, EBSD) 23
4-4-3穿透式電子顯微鏡(Transmission Electron Microscope, TEM)分析 23
4-4-4 X光能量散佈光譜儀(Energy Dispersive Spectrometers, EDS)分析 23
五、實驗結果 24
5-1 拉伸性質分析 24
5-1-1 10-5 s-1與10-3 s-1應變率下,工程應變為0.3時不同溫度之拉伸試驗 25
A、10-5 s-1應變率 25
B、10-3 s-1應變率 25
5-1-2 10-5 s-1與10-3 s-1應變率下,高溫區間拉伸試驗 26
A、10-5 s-1應變率 26
B、10-3 s-1應變率 27
5-2 Stereographic分析 28
5-3 顯微組織分析 29
5-3-1 10-5 s-1應變率拉伸試片 29
A、拉伸至工程應變為0.3時 (ε=0.3) 29
B、拉伸至試片破斷 (fracture) 33
5-3-2 10-3 s-1應變率拉伸試片 35
A、拉伸至工程應變為0.3時 (ε=0.3) 35
B、拉伸至試片破斷 (fracture) 36
5-4 變形雙晶之比例估算 38
六、討論 40
6-1 變形溫度與應變率對變形機制之影響 40
6-1-1 不同應變率下,200 oC和225 oC間的變形機制轉換 40
6-1-2 更高變形溫度下的變形機制轉換 41
6-2 顯微組織對拉伸性質的影響 43
6-2-1 200 oC和225 oC間,溫度與應變率對拉伸性質的影響 43
6-2-2 10-5 s-1應變率下,變形溫度對拉伸性質的影響 44
6-2-3 10-3 s-1應變率下,變形溫度對拉伸性質的影響 46
七、結論 47
八、參考資料 49
參考文獻 References
[1] R. Miller, Ultrafine-grained microstructures and mechanical properties of alloy steels, Metallurgical Materials Transactions A 3 (1972) 905-912.
[2] J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, and W. Cao, Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite, Scripta Materialia 63 (2010) 815-818.
[3] I. Tamura, Deformation-induced martensitic transformation and transformation-induced plasticity in steels, Metal Science 16 (1982) 245-253.
[4] B. C. De Cooman, Structure-properties relationship in TRIP steels containing carbide-free bainite, Current Opinion in Solid State Materials Science 8 (2004) 285-303.
[5] 彭子庭,低應變速率下拉伸溫度對中錳鋼之拉伸性質與顯微組織的影響,國立中山大學材料與光電科學學系碩士論文,2017。
[6] 邱夢婷,拉伸溫度對多相中錳鋼拉伸性質及顯微組織的影響,國立中山大學材料與光電科學學系碩士論文,2017。
[7] H. K. D. H. Bhadeshia and J. Christian, Bainite in steels, Metallurgical Transactions A 21 (1990) 767-797.
[8] E. Swallow and H. Bhadeshia, High resolution observations of displacements caused by bainitic transformation, Materials Science Technology 12 (1996) 121-125.
[9] J. Min and J. Lin, Effect of thermo-mechanical process on the microstructure and secondary-deformation behavior of 22MnB5 steels, Journal of Materials Processing Technology 213 (2013) 818-825.
[10] B. C. De Cooman, O. Kwon, and K. G. Chin, State-of-the-knowledge on TWIP steel, Materials Science Technology 28 (2012) 513-527.
[11] Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, N. Minakawa, A. Moriai, and Y. Morii, Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction, Acta Materialia 52 (2004) 5737-5745.
[12] K. I. Sugimoto, N. Usui, M. Kobayashi, and S. I. Hashimoto, Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels, Iron and Steel Institute of Japan International 32 (1992) 1311-1318.
[13] Z. Cai, H. Ding, R. Misra, and Z. Ying, Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content, Acta Materialia 84 (2015) 229-236.
[14] S. Ding, C. Chang, J. Tu, and K. Yang, Microstructure and tensile behaviour of 15-24 wt% Mn TWIP steels, Materials Science Technology 29 (2013) 1048-1054.
[15] H. Yang, Z. Zhang, and Z. Zhang, Comparison of work hardening and deformation twinning evolution in Fe-22Mn-0.6C-(1.5Al) twinning-induced plasticity steels, Scripta Materialia 68 (2013) 992-995.
[16] G. Dini, R. Ueji, A. Najafizadeh, and S. Monir-Vaghefi, Flow stress analysis of TWIP steel via the XRD measurement of dislocation density, Materials Science Engineering: A 527 (2010) 2759-2763.
[17] J. G. Sevillano, An alternative model for the strain hardening of FCC alloys that twin, validated for twinning-induced plasticity steel, Scripta Materialia 60 (2009) 336-339.
[18] D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humbert, Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions, Materials Science Engineering: A 500 (2009) 196-206.
[19] I. Gutierrez Urrutia and D. Raabe, Dislocation and twin substructure evolution during strain hardening of an Fe-22 wt.% Mn-0.6 wt.% C TWIP steel observed by electron channeling contrast imaging, Acta Materialia 59 (2011) 6449-6462.
[20] J. E. Jin and Y. K. Lee, Strain hardening behavior of a Fe-18Mn-0.6C-1.5Al TWIP steel, Materials Science Engineering: A 527 (2009) 157-161.
[21] V. Shterner, I. B. Timokhina, and H. Beladi, On the work-hardening behaviour of a high manganese TWIP steel at different deformation temperatures, Materials Science Engineering: A 669 (2016) 437-446.
[22] S. Martin, S. Wolf, U. Martin, L. Krüger, and D. Rafaja, Deformation mechanisms in austenitic TRIP/TWIP steel as a function of temperature, Metallurgical Materials Transactions A 47 (2016) 49-58.
[23] O. Grässel, L. Krüger, G. Frommeyer, and L. Meyer, "High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application", International Journal of Plasticity 16 (2000) 1391-1409.
[24] J. K. Kim and B. C. De Cooman, Stacking fault energy and deformation mechanisms in Fe-xMn-0.6C-yAl TWIP steel, Materials Science Engineering: A 676 (2016) 216-231.
[25] D. T. Pierce, J. A. Jiménez, J. Bentley, D. Raabe, and J. E. Wittig, The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation, Acta Materialia 100 (2015) 178-190.
[26] J. E. Jung, J. Park, J. S. Kim, J. B. Jeon, S. K. Kim, and Y. W. Chang, Temperature effect on twin formation kinetics and deformation behavior of Fe-18Mn-0.6C TWIP steel, Metals Materials International 20 (2014) 27-34.
[27] X. Haitao, W. Dengke, and S. Kaihong, Effect of deformation temperature on mechanical properties and microstructure of TWIP steel for expansion tube, High Temperature Materials and Processes 39 (2020) 63-73.
[28] K. I. Sugimoto, M. Kobayashi, and S. I. Hashimoto, Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel, Metallurgical Transactions A 23 (1992) 3085-3091.
[29] J. E. Jin and Y. K. Lee, Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel, Acta Materialia 60 (2012) 1680-1688.
[30] S. Lee, Y. Estrin, and B. C. De Cooman, Effect of the strain rate on the TRIP-TWIP transition in austenitic Fe-12 pct Mn-0.6 pct C TWIP steel, Metallurgical Materials Transactions A 45 (2014) 717-730.
[31] 林泓邦,應變量和拉伸溫度對多相中錳鋼拉伸性質及顯微組織的影響,國立中山大學材料與光電科學學系碩士論文,2018。
[32] C. Cayron, One-step model of the face-centred-cubic to body-centred-cubic martensitic transformation, Acta Crystallographica Section A: Foundations of Crystallography 69 (2013) 498-509.
[33] 陳俊銘,先進高強度鋼中應變誘發變韌鐵相變化初期之組織研究,國立中山大學材料與光電科學學系碩士論文,2020。
[34] J. Bai, Q. Lu, and L. Lu, Detwinning behavior induced by local shear strain in nanotwinned Cu, Acta Metall Sin 52 (2015) 491-496.
[35] S. Sun, M. Cai, H. Ding, H. Huang, and H. Pan, Deformation mechanisms of a novel Mn-based 1 GPa TRIP/TWIP assisted lightweight steel with 63% ductility, Materials Science Engineering: A 802 (2021) 1-10.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code