論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
5.8 GHz Wi-Fi 都卜勒雷達之實現與生理監測應用 Implementation of 5.8 GHz Wi-Fi Doppler Radar For Monitoring Vital Signs |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
64 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2021-09-29 |
繳交日期 Date of Submission |
2021-10-12 |
關鍵字 Keywords |
負阻抗振盪器、注入鎖定振盪器、都卜勒雷達、Wi-Fi雷達、生理監測 Negative Impedance Oscillator, Injection-Locked Oscillator, Doppler Radar, Wi-Fi Radar, Vital Sign Monitoring |
||
統計 Statistics |
本論文已被瀏覽 301 次,被下載 0 次 The thesis/dissertation has been browsed 301 times, has been downloaded 0 times. |
中文摘要 |
本論文提出一個架構簡單且方便製造的5.8 GHz負阻抗注入鎖定振盪器將其應用於Wi-Fi都卜勒雷達系統中,該雷達使用華碩筆電內部Wi-Fi模組發射的Wi-Fi調制通訊波做為都卜勒雷達系統的發射訊號源,結合IQ正交解調的接收機架構,進行生理感測的實驗。由於雷達系統所使用的Wi-Fi調制通訊波包含通訊調制成分,會形成振幅調制雜訊(AM Noise)和相位調制雜訊(PM Noise),使得雷達系統的感測性能不佳,藉由本實驗室提出的注入鎖定技術以及雙通道雜訊抵消法去抑制此兩種Wi-Fi雜訊,使得都卜勒訊號品質提升,進而能夠量測到人體的呼吸和心跳。 |
Abstract |
This thesis presents a simple and easy-to-manufacture 5.8 GHz negative impedance injection-locked oscillator for use in a Wi-Fi Doppler radar system. The radar uses the Wi-Fi modulated signal provided by the internal Wi-Fi module of an ASUS laptop. The Wi-Fi modulated signal is used as the illumination source of the Doppler radar system that is mainly a quadrature receiver to carry out sensing of human vital signs. Since the Wi-Fi modulated signal used by the radar system contains communication modulation that causes amplitude modulation noise (AM Noise) and phase modulation noise (PM Noise), it will degrade the sensing performance of the radar system. With the help of injection locking technique and the dual-channel noise cancellation method, these two kinds of Wi-Fi noise can be suppressed to improve the quality of the Doppler signal, and thus the human breathing and heartbeat can be measured. |
目次 Table of Contents |
論文審定書 ..........................................................i 摘要 ...............................................................ii Abstract ..........................................................iii 目錄 ...............................................................iv 圖次 ...............................................................vi 表次 .............................................................viii 第一章 序論 ........................................................1 1.1 研究背景與動機 ..............................................1 1.2 都卜勒雷達簡介與應用 ........................................3 1.3 章節規劃 ....................................................6 第二章 5.8 GHz負阻抗注入鎖定振盪器 ..........................7 2.1 振盪器設計原理 ..............................................7 2.2 5.8 GHz負阻抗注入鎖定振盪器設計 .......................13 2.2.1 前言 .................................................13 2.2.2 負阻抗振盪器設計 .....................................14 2.2.3 模擬與量測結果 .......................................17 2.3 注入鎖定理論 ...............................................20 2.3.1 注入鎖定方程式 .......................................20 2.3.2 穩定條件與鎖定範圍 ...................................23 第三章 5.8 GHz Wi-Fi訊號都卜勒雷達系統 ...................26 3.1 前言 .......................................................26 3.2 雷達系統架構 ...............................................26 3.3 直接降頻正交解調電路 .......................................29 3.3.1 直接降頻解調電路架構 .................................29 3.3.2 降頻解調測試 .........................................33 3.4 直流準位校 .................................................35 3.5 雙通道雜訊抵銷 ..............................................37 3.6 數位訊號處理 ...............................................39 3.7 雷達系統量測 ...............................................40 3.7.1 實驗系統配置 .........................................40 3.7.2 量測結果 .............................................43 3.7.3 5.8 / 2.4 GHz Wi-Fi 都卜勒雷達系統性能比較 .......49 第四章 結論 .......................................................51 參考文獻 ...........................................................52 |
參考文獻 References |
[1]List Of Mobile Phone Gernerations, Wiki [Online].Available: https://en.wikipedia.org/wiki/List_of_mobile_phone_generations [2]S. Karnouskos, “Self-driving car acceptance and the role of ethics,” IEEE Trans. Eng. Manag., vol. 67, no. 2, pp. 252–265, May 2020. [3]A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A survey on enabling technologies, protocols, and applications,” IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2347–2376, 4th Quart., 2015. [4]W. Li, R. J. Piechocki, K. Woodbridge, C. Tang and K. Chetty, “Passive Wi-Fi Radar for Human Sensing Using a Stand-Alone Access Point,” IEEE Trans Geosci Remote Sens, vol. 59, no. 3, pp. 1986-1998, Mar. 2021 [5]Accu-check Mobile, Accu-check, Taipei, Taiwan [Online].Available: https://www.accu-chek.com.tw/xie-tang-ji-xi-lie/mobile/support [6]OMRON JPN616T, OMRON, Kyoto, Japan [Online].Available: https://www.omronhealthcare.com.tw/mobile/product/ins.php?index_prm_id=0&index_id=115 [7]EC-2H System, Labtech, USA [Online].Available: https://www.labtech.hu/en/product/holter-ecg-and-abp-systems/ec-2h/ [8]E. M. Nowara, T. K. Marks, H. Mansour and A. Veeraraghavan, “Sparse PPG: Towards driver monitoring using camera-based vital signs estimation in near-infrared,” in Proc. IEEE CVPRW, Jun. 2018, pp. 1272-1281. [9]A. K. Abbas, K. Heimann, K. Jergus, T. Orlikowsky, and S. Leonhardt, “Neonatal non-contact respiratory monitoring based on real-time infrared thermography,” BioMed.Eng. OnLine, vol. 10, p. 93, Oct. 2011. [10]K. Mostov, “An apparatus for remote contactless monitoring of sleep apnea,” U.S. Patent 2016 0 022 204 A1, Jan.2016. [11]C. Li, Z. Peng, T. Huang, T. Fan, F. Wang, T. Horng, J. Muñoz-Ferreras, R. Gómez-García, L. Ran, and J. Lin, “A review on recent progress of portable short-range noncontact microwave radar systems,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1692–1706, May 2017. [12]ISM Radio Band, wiki [Online].Available: https://en.wikipedia.org/wiki/ISM_radio_band [13]B. Ahlgren, M. Hidell, and E. C.-H. Ngai, “Internet of Things for smart cities: Interoperability and open data,” IEEE Internet Comput., vol. 20, no. 6, pp. 52–56, Nov./Dec. 2016. [14]Y. He, Y. Chen, Y. Hu and B. Zeng, “Wi-Fi Vision: Sensing, Recognition, and Detection With Commodity MIMO-OFDM Wi-Fi,” IEEE Internet Things J., vol. 7, no. 9, pp. 8296-8317, Sept. 2020 [15]H. Jiang, C. Cai, X. Ma, Y. Yang, and J. Liu, “Smart home based on Wi-Fi sensing: A survey,” IEEE Access, vol. 6, pp. 13317–13325, 2018. [16]Doppler effect, wiki [Online].Available: https://en.wikipedia.org/wiki/Doppler_effect [17]黃昱齊,2.4 GHz數位波束成型都卜勒雷達之實現與生理監測應用,國立中山大學電機工程學系碩士論文,2019。 [18]“脈衝體制雷達的基礎知識,” kknews. Mar. 27, 2018. [Online].Available: https://kknews.cc/zh-tw/military/8lxbkmq.html [19]黃泓偉,24 GHz 頻率調變連續波雷達系統之前端電路設計與整合,國立交通大學電機學院通訊與網路科技產業研發碩士論文,2007。 [20]FMCW radar [Online].Available: https://www.radartutorial.eu/02.basics/Frequency%20Modulated%20Continuous%20Wave%20Radar.en.html [21]陳瑞康,操作於5 GHz頻段之差動對低雜訊放大器及壓控振盪器之設計,國立中山大學電機工程學系碩士論文,2015。 [22]D. M. Pozar, Microwave Engineering, 4th ed. Hoboken: John Willey &Sons, New Jersey,2012. [23]K. W. Ha, H. Ryu, J. H. Lee, J. G. Kim and D. Baek, “Gm -Boosted Complementary Current-Reuse Colpitts VCO With Low Power and Low Phase Noise,” IEEE Microw Wirel Compon Lett, vol. 24, no. 6, pp. 418-420, Jun. 2014. [24]S.-L. Jang, Y. J. Song, and C.-C. Liu, “A differential clapp-VCO in 0.13 μm CMOS technology,” IEEE Microw. Wirel Compon. Lett., vol. 19, no. 6, pp. 404–406, Jun. 200 [25]S. H. Lee, Y. H. Chuang, S. L. Jang, C. C. Chen, “Low-Phase Noise Hartley Differential CMOS Voltage Controlled Oscillator,” IEEE Microw Wirel Compon Lett Vol. 17, Issue 2, pp. 145-147, Feb. 2007. [26]What is self-resonant frequency? [Online].Available: https://www.everythingrf.com/community/what-is-self-resonant-frequency [27]GRM1885C1H2R0CA01D, Murata [Online].Available: https://ds.murata.co.jp/simsurfing/mlcc.html?partnumbers=%5B%22GRM1885C1H2R0CA01%22%5D&oripartnumbers=%5B%22GRM1885C1H2R0CA01D%22%5D&rgear=suaykx&rgearinfo=com [28]J. Choi, and C. Seo, “Microstrip square open loop multiple split ring resonator for low phase noise VCO,” IEEE Trans Microw Theory Tech, vol. 56, no. 12, pp. 3245-3252, Dec. 2008. [29]B. Moon and N. Myung, “Design of Low Phase-Noise Oscillator Based on a Hairpin-Shaped Resonator Using Composite Right/Left-Handed Transmission Line,” IEEE Microw Wirel Compon Letts, vol. 24, no. 1, pp. 44-46, Jan. 2014. [30]RT/duroid 5880 Laminates, Rogers [Online].Available: https://rogerscorp.com/advanced-electronics-solutions/rt-duroid-laminates/rt-duroid-5880-laminates [31]SAV-551+, Mini Circuits, Inc. [Online]. Available: https://www.minicircuits.com/. [32]蘇偉智,高效率E類注入鎖定振盪器組成主動式相位陣列之研究,國立中山大學電機工程學系碩士論文,2015。 [33]蕭介勛,本地振盪源的注入鎖定與牽引現象研究,國立中山大學電機工程學系碩士論文,2008。 [34]陳建綸,Wi-Fi訊號都卜勒相移偵測技術結合計算機視覺處理用以追蹤三維手勢軌跡,國立中山大學電機工程學系碩士論文,2017。 [35]林睿彥,Wi-Fi為基礎之人體成像與生理監測,國立中山大學電機工程學系碩士論文,2020。 [36]W. Massagram, N. M. Hafner, B. Park, V. M. Lubecke, A. Host-Madsen and O. Boric-Lubecke, “Feasibility of heart rate variability measurement from quadrature Doppler radar using arctangent demodulation with DC offset compensation,” in Proc. 29th Ann. Int. Conf. IEEE Eng. Med. Bio. Soc., Sept. 2007, pp. 1643–1646. [37]B. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory Tech., vol. 55, pp. 1073–1079, May 2007 [38]B. Razavi, RF Microelectronics, 2nd ed. Prentice-Hall, Upper Saddle River,2011. [39]張盛富、張嘉展,無線通訊射頻晶片模組設計-射頻系統篇,台北,全華圖書股份有限公司,2009年。 [40]周傳期,利用Wi-Fi訊號偵測手勢及深度學習辨識研究,國立中山大學電機工程學系碩士論文,2018。 [41]ADL5380, Analog Devices, Inc. [Online].Available: https://www.analog.com/en/index.html [42]TCM-63AX+, Mini Circuits, Inc. [Online].Available: https://www.minicircuits.com/. [43]AD8041, Analog Devices, Inc. [Online].Available: https://www.analog.com/en/index.html [44]LPF-B0R3+, Mini Circuits, Inc. [Online].Available: https://www.minicircuits.com/. [45]Zaber Technologies Inc. [Online]Available: https://www.zaber.com/products/product_detail.php?detail=A-LSQ150A [46]L. Liu, Z. Liu, and B. E. Barrowes, “Through-wall bio-radiolocation with UWB impulse radar: Observation, simulation and signal extraction,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 4, no. 4, pp. 791–798, Dec. 2011. [47]A. S. Bugaev, I. A. Vasilyev, S. I. Ivashov, V. B. Parashin, I. K. Sergeev, A. P. Sheyko, and S. I. Schukin, “Remote control of heart and respiratory human system by radar,” Biomed. Tech. Radio-elec., no. 10, pp. 24–31, 2004. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |