論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
透過線上評論分析探究必比登入選前後在用餐體驗上之差異: 以臺北地區2020年至2022年新入選店家為個案研究 Analyzing Online Reviews to Explore Dining Experience Differences Before and After Recognition: A Case Study of Bib Gourmand Restaurants in Taipei |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
80 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-07-07 |
繳交日期 Date of Submission |
2023-07-26 |
關鍵字 Keywords |
米其林、必比登、線上評論、餐飲評論、情緒分析、主題分析、用餐體驗 Michelin, Bib Gourmand, online reviews, dining reviews, sentiment analysis, topic analysis, dining experience |
||
統計 Statistics |
本論文已被瀏覽 243 次,被下載 12 次 The thesis/dissertation has been browsed 243 times, has been downloaded 12 times. |
中文摘要 |
米其林必比登指南於 2018 年在臺北初登場,近幾年每到米其林指南公布時刻,對餐飲市場及消費者具有一定程度的影響力和效應。消費者在選擇餐廳時可以參考米其林必比登指南的推薦外,隨著網路評論的興盛,連帶著影響了消費者的消費行為決策,透過線上評論內容來做為參考和選擇。 本研究基於 2020 - 2022 年臺北市新入選米其林必比登指南的餐廳在 google maps 上入選前一年與入選後一年的評論,共蒐集了七千多則線上評論,透過文字分析技術分別對於所蒐集到的評論內容進行主題分析、情緒分析和詞頻分析,藉以觀察消費者對於入選米其林必比登指南的餐廳在入選前與入選後的差異。 本研究根據用餐體驗中的「食物」、「服務」、「價格」以及「氛圍」將其透過主題分析分為四個構面來對評論內容進行分類。 根據研究結果顯示出在用餐體驗的四個構面中,消費者評論在「食物」構面有顯著差異,表示消費者對於「食物」構面的敏感度較其他三個構面來得高。 米其林必比登指南的評價指標主要集中在「食物」和「價格」上,基於此可以假設消費者對於食物品質和價格具有一定程度的期望和標準。透過線上評論的內容觀察到消費者的負向情緒主要來自於「食物」和「服務」兩個構面。 本研究希望從管理意涵角度出發,建議餐飲業者可以著重提升食物品質以滿足消費者對於食物體驗的期待,以及提升服務態度和效率,減少負面評價。 藉由本研究結果以達到幫助餐飲業者更好地了解消費者需求,根據情緒分數的詳細分析,針對不同構面進行針對性的改進措施,提供更好的產品和服務,同時也可以為消費者提供更好的餐飲體驗,促進整個餐飲市場的發展。 |
Abstract |
With the introduction of the Michelin Guide in Taipei in 2018, it has gained a certain level of influence and impact on the dining market as well as consumers in recent years. When choosing restaurants, consumers can refer to the recommendations of the Michelin Guide. Along with the rise of online reviews, it has also influenced consumer purchasing decisions. Consumers rely on the content of online reviews as a reference for their choices. This study is based on the reviews of restaurants in Taipei that were newly selected in the Michelin Guide Bib Gourmand Award from 2020 to 2022. It collected over 7,000 online reviews from the year before their selection and the year after their selection on Google Maps. Through text analysis techniques, the collected reviews were subjected to thematic analysis, sentiment analysis, and word frequency analysis. The aim was to observe the differences in consumer perception of the Michelin-selected restaurants before and after their selection. Based on dining experiences, this study categorizes the review content into four dimensions: "food," "service," "price," and "ambiance," using topic modeling to analyze online reviews. The research intends to identify the significant differences among these four dimensions of the dining experience. Consumers' reviews show a higher sensitivity towards the "food" dimension compared to the other three dimensions. Our study shows that most reviews primarily focus on "food" and "price," suggesting that consumers have certain expectations and standards for food quality and pricing. Through the analysis of online review content, it is observed that consumers' negative emotions mainly stem from the "food" and "service" dimensions. From a managerial perspective, this study suggests that catering establishments should focus on enhancing food quality to meet consumers' expectations for their dining experience. Additionally, improving service attitude and efficiency while minimizing negative evaluations are recommended. The findings of this study aim to assist catering establishments to meet consumer needs. Through detailed analysis of sentiment scores, targeted improvement measures can be implemented for different dimensions, thereby providing better products and services. Ultimately, this can enhance the dining experience for consumers and promote the overall development of the catering market. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 摘要 ii Abstract iv 目錄 vi 圖次 viii 表次 x 第一章 緒論 1 第一節 研究背景 1 第二節 研究問題與目的 2 第三節 小結 4 第二章 文獻探討 6 第一節 米其林指南 6 第二節 米其林必比登指南 6 第三節 用餐體驗 7 第四節 線上評論 7 第五節 情緒分析 8 第六節 主題分析 9 第三章 研究方法 10 第一節 資料蒐集 13 第二節 文字探勘分析及資料前置處理 20 第三節 主題分析(TOPIC ANALYSIS)23 第四節 情緒分析(SENTIMENT ANALYSIS)26 第四章 研究結果 28 第一節 探索性資料分析與交叉分 析28 第二節 關鍵字詞分析 34 第三節 差異性與探索性統計分析 44 第五章 結論與建議 54 第一節 研究發現 54 第二節 管理意涵 55 第三節 未來展望 58 參考文獻 59 附錄 65 附錄A自定義情緒字詞 65 附錄B自定義停用詞 67 附錄C自定義用餐體驗主題構面字詞 67 |
參考文獻 References |
Michelin Guide (n.d.a), “About us. Michelin guide”, available at: https://guide.michelin.com/en/aboutus (accessed 28 February 2022). A., A. M. G., Robledo, S., & Zuluaga, M. (2023). Topic Modeling: Perspectives From a Literature Review. IEEE Access, 11, 4066–4078. https://doi.org/10.1109/ACCESS.2022.3232939 Alghamdi, R., & Alfalqi, K. (2015). A Survey of Topic Modeling in Text Mining. International Journal of Advanced Computer Science and Applications, 6(1). https://doi.org/10.14569/IJACSA.2015.060121 Anderson, M., & Magruder, J. (2012). Learning from the Crowd: Regression Discontinuity Estimates of the Effects of an Online Review Database. The Economic Journal, 122. https://doi.org/10.1111/j.1468-0297.2012.02512.x Banerjee, S., Bhattacharyya, S., & Bose, I. (2017). Whose online reviews to trust? Understanding reviewer trustworthiness and its impact on business. Decision Support Systems, 96, 17–26. https://doi.org/10.1016/j.dss.2017.01.006 Bang, D., Choi, K., & Kim, A. J. (2022). Does Michelin effect exist? An empirical study on the effects of Michelin stars. International Journal of Contemporary Hospitality Management, 34(6), 2298–2319. https://doi.org/10.1108/IJCHM-08-2021-1025 Banker, S. (2016). A Brief Review of Sentiment Analysis Methods. International Journal of Information Sciences and Techniques, 6(1/2), 89–95. https://doi.org/10.5121/ijist.2016.6210 Barde, B. V., & Bainwad, A. M. (2017). An overview of topic modeling methods and tools. 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), 745–750. https://doi.org/10.1109/ICCONS.2017.8250563 Berbel-Pineda, J. M., Palacios-Florencio, B., Ramírez-Hurtado, J. M., & Santos-Roldán, L. (2019). Gastronomic experience as a factor of motivation in the tourist movements. International Journal of Gastronomy and Food Science, 18, 100171. https://doi.org/10.1016/j.ijgfs.2019.100171 Beuscart, J.-S., Mellet, K., & Trespeuch, M. (2016). Reactivity without legitimacy? Online consumer reviews in the restaurant industry. Journal of Cultural Economy, 9(5), 458–475. https://doi.org/10.1080/17530350.2016.1210534 Branco, N. D. S. D. C., & Salay, E. (2001). Attitude of Consumers in Relation to Eating Out in the Commercial Center of Rio De Janeiro, Brazil. Foodservice Research International, 13(1), 57–65. https://doi.org/10.1111/j.1745-4506.2001.tb00029.x Cheng, T., Tong, C., & Wong, A. T. (2018). The Impact of Corporate Social Responsibility and Food Health and Safety, on the Corporate Image of Hong Kong’s Fast-Food Restaurants. Asian Research Journal of Arts & Social Sciences, 1–18. https://doi.org/10.9734/ARJASS/2018/44116 Chiang, C.-F., & Guo, H.-W. (2021). Consumer perceptions of the Michelin Guide and attitudes toward Michelin-starred restaurants. International Journal of Hospitality Management, 93, 102793. https://doi.org/10.1016/j.ijhm.2020.102793 Darwich, M., Mohd Noah, S. A., Omar, N., & Osman, N. A. (2019). Corpus-Based Techniques for Sentiment Lexicon Generation: A Review. Journal of Digital Information Management, 17(5), 296. https://doi.org/10.6025/jdim/2019/17/5/296-305 D’souza, S. R., & Sonawane, K. (2019). Sentiment Analysis Based on Multiple Reviews by using Machine learning approaches. 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), 188–193. https://doi.org/10.1109/ICCMC.2019.8819813 Fang, B., Ye, Q., Kucukusta, D., & Law, R. (2016). Analysis of the perceived value of online tourism reviews: Influence of readability and reviewer characteristics. Tourism Management, 52, 498–506. https://doi.org/10.1016/j.tourman.2015.07.018 Gan, Q., Ferns, B. H., Yu, Y., & Jin, L. (2017). A Text Mining and Multidimensional Sentiment Analysis of Online Restaurant Reviews. Journal of Quality Assurance in Hospitality & Tourism, 18(4), 465–492. https://doi.org/10.1080/1528008X.2016.1250243 Guo, Y., Barnes, S. J., & Jia, Q. (2017). Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation. Tourism Management, 59, 467–483. https://doi.org/10.1016/j.tourman.2016.09.009 Harada, N., Yamashita, K., Motomura, Y., & Kano, Y. (2020). Applying Statistical Approach to Topic Analysis for more Comprehensive and Appropriate Modeling. 2020 6th Conference on Data Science and Machine Learning Applications (CDMA), 13–18. https://doi.org/10.1109/CDMA47397.2020.00008 Kiatkawsin, K., & Sutherland, I. (2020). Examining Luxury Restaurant Dining Experience towards Sustainable Reputation of the Michelin Restaurant Guide. Sustainability, 12(5), 2134. https://doi.org/10.3390/su12052134 Kim, B., & Velthuis, O. (2021). From reactivity to reputation management: Online consumer review systems in the restaurant industry. Journal of Cultural Economy, 14(6), 675–693. https://doi.org/10.1080/17530350.2021.1895280 Ladki, S. M., & Nomami, M. Z. A. (1996). Consumer Involvement in Restaurant Selection. Journal of Nutrition in Recipe & Menu Development, 2(1), 15–32. https://doi.org/10.1300/J071v02n01_03 Lasne, K. S., Nandrekar, S. S., A Khan, A., & Ghorpade, T. (2021). Food Reviews Classification using multi-label convolutional neural network text classifier. ITM Web of Conferences, 40, 01009. https://doi.org/10.1051/itmconf/20214001009 Liu, Y., & Jang, S. (Shawn). (2009). Perceptions of Chinese restaurants in the U.S.: What affects customer satisfaction and behavioral intentions? International Journal of Hospitality Management, 28(3), 338–348. https://doi.org/10.1016/j.ijhm.2008.10.008 Marrese-Taylor, E., Velásquez, J. D., Bravo-Marquez, F., & Matsuo, Y. (2013). Identifying Customer Preferences about Tourism Products Using an Aspect-based Opinion Mining Approach. Procedia Computer Science, 22, 182–191. https://doi.org/10.1016/j.procs.2013.09.094 Mehta, P., & Pandya, D. S. (2020). A Review On Sentiment Analysis Methodologies, Practices And Applications. International Journal of Scientific & Technology Research. https://www.semanticscholar.org/paper/A-Review-On-Sentiment-Analysis-Methodologies%2C-And-Mehta-Pandya/bbd48ed7502ece18eecf62153b23d0d7c3e08cd2 Pizam, A., Jeong, G.-H., Reichel, A., van Boemmel, H., Lusson, J. M., Steynberg, L., State-Costache, O., Volo, S., Kroesbacher, C., Kucerova, J., & Montmany, N. (2004). The Relationship between Risk-Taking, Sensation-Seeking, and the Tourist Behavior of Young Adults: A Cross-Cultural Study. Journal of Travel Research, 42(3), 251–260. https://doi.org/10.1177/0047287503258837 Saad Andaleeb, S., & Conway, C. (2006). Customer satisfaction in the restaurant industry: An examination of the transaction‐specific model. Journal of Services Marketing, 20(1), 3–11. https://doi.org/10.1108/08876040610646536 ŞAHİN, A., ÇOLAKOĞLU, Ü., & ÖZDOĞAN, O. (2021). A research on customer experiences and perceptions for Michelin starred restaurants. Journal of Multidisciplinary Academic Tourism, 6, 61–72. https://doi.org/10.31822/jomat.835486 Sattar, A., & Fatima, J. (2021). Sentiment Analysis Based on Reviews Using Machine Learning Techniques. Pakistan Journal of Engineering and Technology, 4(2), 149–152. https://doi.org/10.51846/vol4iss2pp149-152 SawantGanesh, S., & Kanawade. (2014). A Review on Topic Modeling in Information Retrieval. https://www.semanticscholar.org/paper/A-Review-on-Topic-Modeling-in-Information-Retrieval-SawantGanesh-Kanawade/983b4cdb393ab2301faff615278f5ba8a92dd85f Sulek, J., & Hensley, R. (2004). The Relative Importance of Food, Atmosphere, and Fairness of WaitThe Case of a Full-service Restaurant. Cornell Hotel and Restaurant Administration Quarterly - CORNELL HOTEL RESTAUR ADMIN Q, 45, 235–247. https://doi.org/10.1177/0010880404265345 Velmurugan, T., Archana, M., & Latha, U. (2022). Sentiment Analysis of Customer Reviews Based Texts Using Classification Algorithms. 2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC), 185–191. https://doi.org/10.1109/ICNISC57059.2022.00047 Yusof, N. N., Mohamed, A., & Abdul-Rahman, S. (2015). Reviewing Classification Approaches in Sentiment Analysis (M. W. Berry, A. Mohamed, & B. W. Yap, 編輯; 卷 545, 頁 43–53). Springer Singapore. https://doi.org/10.1007/978-981-287-936-3_5 Zahoor, K., Bawany, N. Z., & Hamid, S. (2020). Sentiment Analysis and Classification of Restaurant Reviews using Machine Learning. 2020 21st International Arab Conference on Information Technology (ACIT), 1–6. https://doi.org/10.1109/ACIT50332.2020.9300098 Zhang, L., & Liu, B. (2017). Sentiment Analysis and Opinion Mining (C. Sammut & G. I. Webb, 編輯; 頁 1152–1161). Springer US. https://doi.org/10.1007/978-1-4899-7687-1_907 Zhang, Z., Ye, Q., Law, R., & Li, Y. (2010). The impact of e-word-of-mouth on the online popularity of restaurants: A comparison of consumer reviews and editor reviews. International Journal of Hospitality Management, 29(4), 694–700. https://doi.org/10.1016/j.ijhm.2010.02.002 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |